UNIVERSITY OF CRETE
 DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
 APPLIED ALGEBRA - MEM244 (FALL SEMESTER 2019-20)
 LECTURER: G. KAPETANAKIS

Final exam, January 2020 - Answers

Question 1. i. Let $\sqrt{-5}$ be a root of $X^{2}+5 \in \mathbb{Z}[X]$. Show that 3 is irreducible, but not prime in $\mathbb{Z}[\sqrt{-5}]$.
ii. Compute $\phi(31)$ and find (or describe) all the primitive elements of $\mathbb{F}_{2^{5}}$.

Answer. i. Define the following map:

$$
\nu: \mathbb{Z}[\sqrt{-5}] \rightarrow \mathbb{Z}_{\geq 0}, \quad a+b \sqrt{-5} \mapsto a^{2}+5 b^{2}
$$

It is trivial to check that $\nu((a+b \sqrt{-5})(c+d \sqrt{-5}))=\nu(a+b \sqrt{-5}) \nu(c+d \sqrt{-5})$. It follows that the only units of $\mathbb{Z}[\sqrt{-5}]$ are ± 1. Next, assume that

$$
3=(a+b \sqrt{-5})(c+d \sqrt{-5})
$$

It follows that $\nu(a+b \sqrt{-5}) \nu(c+d \sqrt{-5})=9$. We have three possibilities:
(a) if $\nu(a+b \sqrt{-5})=1$, then $a+b \sqrt{-5}=1$, a unit,
(b) if $\nu(a+b \sqrt{-5})=3$, then $a^{2}+5 b^{2}=3$, impossible and
(c) if $\nu(a+b \sqrt{-5})=9$, then $\nu(c+d \sqrt{-5})=1$ and $c+d \sqrt{-5}=1$, a unit.

It follows that 3 is irreducible. However, $3 \mid(2+\sqrt{-5})(2-\sqrt{-5})$, but $3 \nmid(2+\sqrt{-5})$ and $3 \nmid(2-\sqrt{-5})$, that is, 3 is not prime.
ii. 31 is a prime, hence $\phi(31)=30$. We have that $2^{5}=32$, hence $\mathbb{F}_{2^{5}}$ has $\phi(31)=30$ primitive elements, i.e., all of its elements are primitive except exactly two. Since 0 and 1 cannot be primitive in $\mathbb{F}_{2^{5}}$, it follows that all the elements $\neq 0,1$ are primitive.

Question 2. Find the minimum n such that $\mathbb{F}_{2^{n}}$ contains all the roots of $X^{18}-1 \in \mathbb{F}_{2}[X]$. List all the intermediate extensions of $\mathbb{F}_{2^{n}} / \mathbb{F}_{2}$.

Answer. Over \mathbb{F}_{2}, we have that

$$
X^{18}-1=\left(X^{9}-1\right)^{2}=\left(\Psi_{1} \Psi_{3} \Psi_{9}\right)^{2}
$$

We have that $\Psi_{1}=X-1$. Also, $\operatorname{ord}_{3}(2)=2$ and $\operatorname{ord}_{9}(2)=6$. These facts, combined with the facts that $\phi(3)=2$ and $\phi(9)=6$ imply that Ψ_{3} and Ψ_{9} are irreducible polynomials of degree 2 and 6 respectively. It follows that $n=6$ and the intermediate extensions of $\mathbb{F}_{2^{6}} / \mathbb{F}_{2}$ are $\mathbb{F}_{2}, \mathbb{F}_{2^{2}}$, $\mathbb{F}_{2^{3}}$ and $\mathbb{F}_{2^{6}}$.

Question 3. i. Prove the generalized Möbius inversion formula: if $f: \mathbb{Z} \rightarrow G$ and $F: \mathbb{Z} \rightarrow G$, where (G, \cdot) an abelian group, then

$$
f(n)=\prod_{d \mid n} F(d) \Rightarrow F(n)=\prod_{d \mid n} f(d)^{\mu(n / d)}
$$

Hint: Use the identity $\sum_{d \mid n} \mu(d)= \begin{cases}1, & n=1, \\ 0, & n>1 .\end{cases}$
ii. Show that

$$
\Psi_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)}
$$

Answer. i. We have that

$$
\begin{aligned}
\prod_{d \mid n} f(d)^{\mu(n / d)} & =\prod_{d \mid n} f\left(\frac{n}{d}\right)^{\mu(d)}=\prod_{d \mid n}\left(\prod_{k \left\lvert\, \frac{n}{d}\right.} F(k)\right)^{\mu(d)}=\prod_{d \mid n} \prod_{k \left\lvert\, \frac{n}{d}\right.} F(k)^{\mu(d)} \\
& =\prod_{d \mid n} F(d)^{\sum_{k \left\lvert\, \frac{n}{d}\right.} \mu(k)}
\end{aligned}
$$

The latter combined with the identity

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1, & n=1 \\ 0, & n>1\end{cases}
$$

imply the desired result.
ii. We work on the abelian group $\left(\mathbb{F}_{q}(x), \cdot\right)$. Using the generalized Möbius inversion formula on the identity

$$
x^{n}-1=\prod_{d \mid n} \Psi_{d}(x)
$$

immediately yields the desired result.
Question 4. Let α be a root of the irreducible polynomial $X^{2}+X+1 \in \mathbb{F}_{2}[X]$. We define the linear code C over $\mathbb{F}_{4}=F_{2}(\alpha)$ as follows:

$$
C=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in F_{4}^{5}: x_{4}=\alpha x_{1}+x_{2}+x_{3} \text { and } x_{5}=x_{1}+\alpha x_{2}+(\alpha+1) x_{3}\right\}
$$

i. Find a generator and a parity-check matrix of C.
ii. Show that the parameters of the code are $[5,3,2]$.

Answer. i. It is immediate from the definition of C that a generator matrix is

$$
G=\left(\begin{array}{ccccc}
1 & 0 & 0 & \alpha & 1 \\
0 & 1 & 0 & 1 & \alpha \\
0 & 0 & 1 & 1 & \alpha+1
\end{array}\right)
$$

We take advantage of the fact that G is in standard form and immediately extract the following parity-check matrix

$$
H=\left(\begin{array}{ccccc}
\alpha & 1 & 1 & 1 & 0 \\
1 & \alpha & \alpha+1 & 0 & 1
\end{array}\right)
$$

ii. Since H is a 2×5 matrix it is clear that C is an [5,3]-code and it remains to show that $d(C)=2$. Notice that H does not contain the all-zero column, i.e., $d(C)>1$, while the first and the third columns of H are linearly dependent (multiplying the first column by $\alpha+1$ gives us the third column), thus $d(C) \leq 2$. It follows that $d(C)=2$.

Question 5. Show that the Reed-Muller code $\mathcal{R}(1,3)$ is self-dual.

Answer. We construct $\mathcal{R}(1, i)$, for $1 \leq i \leq 3$, as follows:

$$
\begin{aligned}
\mathcal{R}(1,1)= & \{00,01,10,11\} \\
\mathcal{R}(1,2)= & \{0000,0101,1010,1111,0011,0110,1001,1100\} \\
\mathcal{R}(1,3)= & \{00000000,01010101,10101010,11111111,00110011,01100110,10011001,1100110 \\
& 00001111,01011010,10100101,11110000,00111100,01101001,10010110,11000011\}
\end{aligned}
$$

We easily confirm that $\mathcal{R}(1,3)$ is self-orthogonal, i.e. $\mathcal{R}(1,3) \subseteq \mathcal{R}(1,3)^{\perp}$. Furthermore, we know that $\mathcal{R}(1,3)$ is an $[8,4,4]$-code, hence

$$
\operatorname{dim}\left(\mathcal{R}(1,3)^{\perp}\right)=8-4=4=\operatorname{dim}(\mathcal{R}(1,3))
$$

It follows that $\mathcal{R}(1,3)=\mathcal{R}(1,3)^{\perp}$.
Question 6. Let C be a linear $[n, k, d]$-code over \mathbb{F}_{q} with $d \geq 2$. Choose some $1 \leq i \leq n$ and delete the i-th coordinate of every codeword. So, we define the code

$$
C_{i}=\left\{\left(c_{1}, \ldots, c_{i-1}, c_{i+1}, \ldots, c_{n}\right):\left(c_{1}, \ldots, c_{n}\right) \in C\right\}
$$

i Show that C_{i} has parameters $\left[n-1, k, d_{i}\right]$ with $d-1 \leq d_{i} \leq d$.
ii If C is MDS, show that C_{i} is also MDS.
Answer. i. It is clear that by construction, that C_{i} is linear and has length $n-1$. Also, since $d \geq 2$, the deletion of one coordinate cannot result a reduction in the number of codewords, as this would imply that two codewords of C differ only in the deleted coordinate. Hence $\left|C_{i}\right|=|C|$, that is, $\operatorname{dim}\left(C_{i}\right)=\operatorname{dim}(C)=k$. Regarding the minimum distance, note that the Hamming weight of a codeword of C_{i} can be either equal or smaller by exactly 1 , when compared with the Hamming weight of the corresponding codeword of C. It follows that $d\left(C_{i}\right)=d(C)$ or $d\left(C_{i}\right)=d(C)-1$.
ii. Since C is MDS, we have that

$$
k+d=n+1
$$

From the previous item, C_{i} is an $\left[n-1, k, d^{\prime}\right]$-code, where $d^{\prime}=d$ or $d^{\prime}=d-1$. If $d^{\prime}=d$, then the parameters of C_{i} violate the Singleton bound, hence $d^{\prime}=d-1$. It follows that C_{i} is MDS.

