UNIVERSITY OF CRETE
 DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
 APPLIED ALGEBRA - MEM244 (FALL SEMESTER 2019-20) INSTRUCTOR: G. KAPETANAKIS

Final exam, September 2020 - Answers

Question 1. Find an irreducible polynomial of degree 3 over \mathbb{F}_{2}, that is not primitive, or explain why such polynomial does not exist.

Answer. Notice that, trivially, all polynomials over \mathbb{F}_{2} are monic. We have that there are

$$
\frac{\phi\left(2^{3}-1\right)}{3}=\frac{\phi(7)}{3}=\frac{6}{3}=2
$$

primitive polynomials of degree 3 over \mathbb{F}_{2}. Likewise, there are

$$
\frac{1}{3} \sum_{d \mid 3} \mu(d) 2^{3 / d}=\frac{2^{3}-2}{3}=\frac{6}{3}=2
$$

irreducible polynomials of degree 3 over \mathbb{F}_{2}. Since all primitive polynomials are also irreducible, this means that, in this case, the opposite is also true. Hence there are no irreducible polynomials of degree 3 over \mathbb{F}_{2} that are not primitive.

Question 2. i. Prove that Ψ_{19} and Ψ_{27} are both irreducible and of the same degree over \mathbb{F}_{2}.
ii. Let q be a prime power and let ζ be a primitive n-th root of unity over \mathbb{F}_{q}. Prove that

$$
\sum_{i=0}^{n-1} \zeta^{i}= \begin{cases}0, & \text { if } n \neq 1 \\ 1, & \text { if } n=1\end{cases}
$$

Hint: Observe that $\left\{\zeta^{i}: i=0, \ldots, n-1\right\}$ are exactly the roots of $X^{n}-1$.
Answer. i. First, observe that

$$
\operatorname{deg}\left(\Psi_{19}\right)=\phi(19)=18=\phi(27)=\operatorname{deg}\left(\Psi_{27}\right)
$$

Further, we have that Ψ_{19} factors into $\phi(19) / d$ distinct monic irreducible polynomials of degree d, where d is the order of 2 modulo 19 . We easily verify that, in this case, $d=18=$ $\phi(19)$, that is, Ψ_{19} is irreducible. Similarly, Ψ_{27} is also irreducible.
ii. The result is trivial when $n=1$. Assume that $n>1$. Observe that $\left\{\zeta^{i}: i=0, \ldots, n-1\right\}$ are exactly the roots of $X^{n}-1$. Thus

$$
X^{n}-1=(X-1)(X-\zeta) \cdots\left(X-\zeta^{n-1}\right)
$$

In the above polynomial equation, observe that the coefficient of X^{n-1} on the LHS is 0 and the coefficient of X^{n-1} on the RHS is $-1-\zeta-\cdots-\zeta^{n-1}$. The result follows.

Question 3. i. Find all the primitive elements of \mathbb{F}_{13}.
ii. Recall that the information rate of a q-ary (n, M, d)-code C is $\delta:=\frac{\log _{q}(|C|)}{n}$. If δ_{r} stands for the information rate of $\operatorname{Ham}(r, 2)$, determine $\lim _{r \rightarrow \infty} \delta_{r}$.

Answer. i. First, we notice that we have $\phi(13-1)=\phi(12)=4$ primitive elements in \mathbb{F}_{13}. Moreover, the order of an element of \mathbb{F}_{13}^{*} must divide 12 , i.e., it may be $1,2,3,4,6$ or 12 . We check that $\operatorname{ord}(2)=12$, as $2^{1}=2 \neq 1,2^{2}=4 \neq 1,2^{3}=8 \neq 1,2^{4}=16=3 \neq 1$ and $2^{6}=2^{4} 2^{2}=3 \cdot 4=12 \neq 1$. It follows that 2 is primitive in \mathbb{F}_{13}. It follows that the primitive elements of \mathbb{F}_{13} are

$$
\left\{2^{i}: 1 \leq i \leq 12, \operatorname{gcd}(i, 12)=1\right\}=\left\{2^{1}, 2^{5}, 2^{7}, 2^{11}\right\}=\{2,6,11,7\}
$$

ii. We have that $\operatorname{Ham}(r, 2)$ is a binary $\left[2^{r}-1,2^{r}-1-r, 3\right]$-code. It follows that $\delta_{r}=\frac{2^{r}-1-r}{2^{r}-1}$, hence $\lim _{r \rightarrow \infty} \delta_{r}=1$.

Question 4. Let C be the binary code with generator matrix

$$
G=\left(\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

After you determine the parameters of C, decode the words $w_{1}=11111$ and $w_{2}=00111$, using syndrome decoding.

Answer. Note that G is in standard form. It follows that

$$
H=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

is a parity-check matrix for C. From H, we get that C is a binary [5,2,3]-code. It follows that we will have a total of 8 syndromes and, since C corrects 1 error, all words of Hamming weight up to 1 will appear as coset leaders, while we will have to find two more words (of weight 2), that will correspond to the remaining syndromes. So, we get that a syndrome look-up table is the following:

Coset leader	Syndrome
00000	000
10000	110
01000	011
00100	100
00010	010
00001	001
11000^{*}	101
01100^{*}	111

We compute $S\left(w_{1}\right)=010$, so the error is $e_{1}=00010$ and we decode to 11101 . Finally, we compute $S\left(w_{2}\right)=111$, which means that we decode only in the case of complete decoding and in which case, we may assume that the error term is $e_{2}=01100$ and we may decode to 01011.

