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1st exercise set - Answers

Exercise 1. Let a be an element of finite order k in the multiplicative group G.
Show that for m ∈ Z we have am = e if and only if k | m, where e stands for the
identity element of G.

Answer. (⇒) Suppose am = e. Then, by Euclidean division, we have that there
exists some q, r ∈ Z, with 0 ≤ r < k such that m = qk + r. It follows that

am = e ⇒ (ak)qar = e ⇒ ar = e.

The minimality of e yields that r = 0 and the result follows.

(⇐) k | m implies that m = kℓ for some ℓ. Hence

am = akℓ = (ak)ℓ = e.

Exercise 2. For a commutative ring of prime characteristic p, show that

(a1 + · · ·+ as)
pn = ap

n

1 + · · · apns

for all a1, . . . , as ∈ R and n ∈ N.

Answer. LetR commutative ring of characteristic p. We know that for every a, b ∈
R,

(a+ b)p = ap + bp.

It follows that

(a1 + · · ·+ as)
p = (a1 + · · ·+ as−1)

p + aps

= (a1 + · · ·+ as−2)
p + aps−1 + aps

= . . .

= ap1 + · · ·+ aps.

The latter yields:

(a1 + · · ·+ as)
pn = (ap1 + · · ·+ aps)

pn−1

= (ap
2

1 + · · ·+ ap
2

s )p
n−2

= . . .

= ap
n

1 + · · ·+ ap
n

s
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Exercise 3. LetR be a commutative ring with a unit that does not have any zero-
divisors. Show that charR = 0 or p, where p is a prime number. Deduce that a
finite field has prime characteristic.

Answer. Assume that charR = mn, where m,n ∈ Z>1. It follows that

µ := 1 + · · ·+ 1︸ ︷︷ ︸
m−times

6= 0 and ν := 1 + · · ·+ 1︸ ︷︷ ︸
n−times

6= 0,

since m,n < charR. However

µ · ν = 1 + · · ·+ 1︸ ︷︷ ︸
mn−times

= 0,

that is,R has zero-divisors, a contradiction.The proof of the first statement is now
complete.

The second statement follows immediately from the first.

Exercise 4. Take n > 1 a square-free integer and the integral domain Z[
√
−n] :=

{a+ b
√
−n | a, b ∈ Z}. Show that Z[

√
−n]∗ = {±1}.

Answer. Define

ν : Z[
√
−n] → Z≥0,

a+ b
√
−n 7→ a2 + nb2.

It is not hard to check that for x, y ∈ Z[
√
−n], ν(xy) = ν(x)ν(y) and that ν(x) =

0 ⇐⇒ x = 0. It follows that x ∈ Z[
√
−n]∗ implies ν(x) = 1. We have that

ν(a+ b
√
−n) = 1 ⇐⇒ a2 + nb2 = 1 ⇐⇒ a = ±1 and b = 0.

The result follows.

Exercise 5. Take n as in Exercise 4. In addition, assume that n is not a prime and
take p a prime divisor of n.

1. Show that p is not a prime in Z[
√
−n].

2. Show that p is irreducible in Z[
√
−n].

Answer. 1. Assume that p is prime. We have that p | −n = (
√
−n)2, hence

p |
√
−n ⇐⇒ ν(p) | ν(

√
−n) ⇐⇒ p2 | n, where ν as in the answer of

Exercise 4. The latter is impossible because n is square-free.

2. Let a, b, c, d ∈ Z, such that p = (a + b
√
−n)(c + d

√
−n). It follows that

ν(a+ b
√
−n)ν(c+ d

√
−n) = ν(p) = p2, i.e.,

ν(a+ b
√
−n) = 1, p or p2.
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In the first case, a+b
√
−n = ±1, hence a unit. In the last case c+d

√
−n =

±1, hence a unit. So, the only case left to check is ν(a + b
√
−n) = p.

However, this implies
a2 + nb2 = p.

Since p | n and p is prime, while n is non-prime, we get that p < n and that
above implies b = 0, which in turn implies a2 = p, impossible. It follows
that either a+ b

√
−n or c+ d

√
−n is a unit, that is, p is irreducible.

Exercise 6. Take n as in Exercise 4. In addition, assume that n+ 1 is not a prime
and take p a prime divisor of n+ 1.

1. Show that p is not a prime in Z[
√
−n].

2. Show that p is irreducible in Z[
√
−n].

Answer. 1. Assume that p is prime. We have that p | n+1 = (1+
√
−n)(1−√

−n), hence p | 1 +
√
−n or p | 1−

√
−n. Either case, implies that there

exist some a, b ∈ Z, such that 1±
√
−n = pa+pb

√
−n. The latter is clearly

impossible.

2. Let a, b, c, d ∈ Z, such that p = (a + b
√
−n)(c + d

√
−n). It follows that

ν(a+ b
√
−n)ν(c+ d

√
−n) = ν(p) = p2, i.e.,

ν(a+ b
√
−n) = 1, p or p2.

In the first case, a+b
√
−n = ±1, hence a unit. In the last case c+d

√
−n =

±1, hence a unit. So, the only case left to check is ν(a + b
√
−n) = p.

However, this implies
a2 + nb2 = p.

Since p | n + 1 and p is prime, while n + 1 is non-prime, we get that
p ≤ 2(n + 1), i.e., p < n. Now, the above implies b = 0, which in turn
implies a2 = p, impossible. It follows that either a + b

√
−n or c + d

√
−n

is a unit, that is, p is irreducible.

Exercise 7. Take n > 2 a square-free integer. Show thatZ[
√
−n] is not a principal

ideal domain.

Answer. In every PID, we know that all irreducible elements are prime. However,
since n > 2, at least one of n, n + 1 is even and ≥ 4, hence non-prime divisible
by p = 2. Now Exercises 5 and 6 imply that p = 2 is irreducible but not prime in
Z[
√
−n].

Exercise 8. Let R be a commutative ring with a unit. Show that

R[X]/〈X6 −X5 +X − 1〉

is not a field.
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Answer. R[X]/〈X6 −X5 +X − 1〉 is a field iff 〈X6 −X5 +X − 1〉 is maximal,
which holds iff X6 −X5 +X − 1 is irreducible. The latter however is not true,
since

X6 −X5 +X − 1 = (X − 1)(X5 + 1).

Exercise 9. 1. Find all the genuine ideals I ⊴ Z, such that 〈24〉 ⊆ I . Which
of those are maximal?

2. Find all the genuine ideals I ⊴ Q[x], such that 〈x3 − 4x2 + 5x − 2〉 ⊆ I .
Which of those are maximal?

Answer. If R is a PID’s, we have that if I, J ⊴ R, then I ⊆ J iff I = 〈i〉 and
J = 〈j〉 for some j | i. It follows that identifying the ideals J such that I ⊆ J is
equivalent to identifying the divisors of i.

1. According to the above, 〈24〉 ⊆ I ⇐⇒ I = 〈i〉, for some i | 24. Since
24 = 233, the divisors of 24 are

1, 2, 4, 8, 3, 6, 12 and 24.

Since 〈1〉 = Z, we exclude 1. The ideals in question are

〈2〉, 〈4〉, 〈8〉, 〈3〉, 〈6〉, 〈12〉 and 〈24〉.

Since maximal ideals are generated by irreducible elements, the maximal
ideals of the above list are 〈2〉 and 〈3〉.

2. The answer of this item is similar the first one’s, once we notice that

x3 − 4x2 + 5x− 2 = (x− 1)2(x− 2).

4


