UNIVERSITY OF CRETE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
APPLIED ALGEBRA - MEM244 (FALL SEMESTER 2019-20)
LECTURER: G. KAPETANAKIS
1st exercise set - Answers
Exercise 1. Let a be an element of finite order k in the multiplicative group G. Show that for $m \in \mathbb{Z}$ we have $a^{m}=e$ if and only if $k \mid m$, where e stands for the identity element of G.

Answer. (\Rightarrow) Suppose $a^{m}=e$. Then, by Euclidean division, we have that there exists some $q, r \in \mathbb{Z}$, with $0 \leq r<k$ such that $m=q k+r$. It follows that

$$
a^{m}=e \Rightarrow\left(a^{k}\right)^{q} a^{r}=e \Rightarrow a^{r}=e .
$$

The minimality of e yields that $r=0$ and the result follows.
$(\Leftarrow) k \mid m$ implies that $m=k \ell$ for some ℓ. Hence

$$
a^{m}=a^{k \ell}=\left(a^{k}\right)^{\ell}=e .
$$

Exercise 2. For a commutative ring of prime characteristic p, show that

$$
\left(a_{1}+\cdots+a_{s}\right)^{p^{n}}=a_{1}^{p^{n}}+\cdots a_{s}^{p^{n}}
$$

for all $a_{1}, \ldots, a_{s} \in R$ and $n \in \mathbb{N}$.
Answer. Let R commutative ring of characteristic p. We know that for every $a, b \in$ R,

$$
(a+b)^{p}=a^{p}+b^{p} .
$$

It follows that

$$
\begin{aligned}
\left(a_{1}+\cdots+a_{s}\right)^{p} & =\left(a_{1}+\cdots+a_{s-1}\right)^{p}+a_{s}^{p} \\
& =\left(a_{1}+\cdots+a_{s-2}\right)^{p}+a_{s-1}^{p}+a_{s}^{p} \\
& =\cdots \\
& =a_{1}^{p}+\cdots+a_{s}^{p} .
\end{aligned}
$$

The latter yields:

$$
\begin{aligned}
\left(a_{1}+\cdots+a_{s}\right)^{p^{n}} & =\left(a_{1}^{p}+\cdots+a_{s}^{p}\right)^{p^{n-1}} \\
& =\left(a_{1}^{p^{2}}+\cdots+a_{s}^{p^{2}}\right)^{p^{n-2}} \\
& =\cdots \\
& =a_{1}^{p^{n}}+\cdots+a_{s}^{p^{n}}
\end{aligned}
$$

Exercise 3. Let R be a commutative ring with a unit that does not have any zerodivisors. Show that $\operatorname{char} R=0$ or p, where p is a prime number. Deduce that a finite field has prime characteristic.

Answer. Assume that $\operatorname{char} R=m n$, where $m, n \in \mathbb{Z}_{>1}$. It follows that

$$
\mu:=\underbrace{1+\cdots+1}_{m \text {-times }} \neq 0 \quad \text { and } \quad \nu:=\underbrace{1+\cdots+1}_{n-\text { times }} \neq 0,
$$

since $m, n<\operatorname{char} R$. However

$$
\mu \cdot \nu=\underbrace{1+\cdots+1}_{m n-\text { times }}=0
$$

that is, R has zero-divisors, a contradiction. The proof of the first statement is now complete.

The second statement follows immediately from the first.
Exercise 4. Take $n>1$ a square-free integer and the integral domain $\mathbb{Z}[\sqrt{-n}]:=$ $\{a+b \sqrt{-n} \mid a, b \in \mathbb{Z}\}$. Show that $\mathbb{Z}[\sqrt{-n}]^{*}=\{ \pm 1\}$.

Answer. Define

$$
\begin{aligned}
\nu & : \mathbb{Z}[\sqrt{-n}]
\end{aligned} \rightarrow \mathbb{Z}_{\geq 0},
$$

It is not hard to check that for $x, y \in \mathbb{Z}[\sqrt{-n}], \nu(x y)=\nu(x) \nu(y)$ and that $\nu(x)=$ $0 \Longleftrightarrow x=0$. It follows that $x \in \mathbb{Z}[\sqrt{-n}]^{*}$ implies $\nu(x)=1$. We have that

$$
\nu(a+b \sqrt{-n})=1 \Longleftrightarrow a^{2}+n b^{2}=1 \Longleftrightarrow a= \pm 1 \text { and } b=0
$$

The result follows.
Exercise 5. Take n as in Exercise 4. In addition, assume that n is not a prime and take p a prime divisor of n.

1. Show that p is not a prime in $\mathbb{Z}[\sqrt{-n}]$.
2. Show that p is irreducible in $\mathbb{Z}[\sqrt{-n}]$.

Answer. 1. Assume that p is prime. We have that $p \mid-n=(\sqrt{-n})^{2}$, hence $p|\sqrt{-n} \Longleftrightarrow \nu(p)| \nu(\sqrt{-n}) \Longleftrightarrow p^{2} \mid n$, where ν as in the answer of Exercise 4. The latter is impossible because n is square-free.
2. Let $a, b, c, d \in \mathbb{Z}$, such that $p=(a+b \sqrt{-n})(c+d \sqrt{-n})$. It follows that $\nu(a+b \sqrt{-n}) \nu(c+d \sqrt{-n})=\nu(p)=p^{2}$, i.e.,

$$
\nu(a+b \sqrt{-n})=1, p \text { or } p^{2} .
$$

In the first case, $a+b \sqrt{-n}= \pm 1$, hence a unit. In the last case $c+d \sqrt{-n}=$ ± 1, hence a unit. So, the only case left to check is $\nu(a+b \sqrt{-n})=p$. However, this implies

$$
a^{2}+n b^{2}=p
$$

Since $p \mid n$ and p is prime, while n is non-prime, we get that $p<n$ and that above implies $b=0$, which in turn implies $a^{2}=p$, impossible. It follows that either $a+b \sqrt{-n}$ or $c+d \sqrt{-n}$ is a unit, that is, p is irreducible.

Exercise 6. Take n as in Exercise 4. In addition, assume that $n+1$ is not a prime and take p a prime divisor of $n+1$.

1. Show that p is not a prime in $\mathbb{Z}[\sqrt{-n}]$.
2. Show that p is irreducible in $\mathbb{Z}[\sqrt{-n}]$.

Answer. 1. Assume that p is prime. We have that $p \mid n+1=(1+\sqrt{-n})(1-$ $\sqrt{-n}$, hence $p \mid 1+\sqrt{-n}$ or $p \mid 1-\sqrt{-n}$. Either case, implies that there exist some $a, b \in \mathbb{Z}$, such that $1 \pm \sqrt{-n}=p a+p b \sqrt{-n}$. The latter is clearly impossible.
2. Let $a, b, c, d \in \mathbb{Z}$, such that $p=(a+b \sqrt{-n})(c+d \sqrt{-n})$. It follows that $\nu(a+b \sqrt{-n}) \nu(c+d \sqrt{-n})=\nu(p)=p^{2}$, i.e.,

$$
\nu(a+b \sqrt{-n})=1, p \text { or } p^{2} .
$$

In the first case, $a+b \sqrt{-n}= \pm 1$, hence a unit. In the last case $c+d \sqrt{-n}=$ ± 1, hence a unit. So, the only case left to check is $\nu(a+b \sqrt{-n})=p$. However, this implies

$$
a^{2}+n b^{2}=p
$$

Since $p \mid n+1$ and p is prime, while $n+1$ is non-prime, we get that $p \leq 2(n+1)$, i.e., $p<n$. Now, the above implies $b=0$, which in turn implies $a^{2}=p$, impossible. It follows that either $a+b \sqrt{-n}$ or $c+d \sqrt{-n}$ is a unit, that is, p is irreducible.

Exercise 7. Take $n>2$ a square-free integer. Show that $\mathbb{Z}[\sqrt{-n}]$ is not a principal ideal domain.

Answer. In every PID, we know that all irreducible elements are prime. However, since $n>2$, at least one of $n, n+1$ is even and ≥ 4, hence non-prime divisible by $p=2$. Now Exercises 5 and 6 imply that $p=2$ is irreducible but not prime in $\mathbb{Z}[\sqrt{-n}]$.

Exercise 8. Let R be a commutative ring with a unit. Show that

$$
R[X] /\left\langle X^{6}-X^{5}+X-1\right\rangle
$$

is not a field.

Answer. $R[X] /\left\langle X^{6}-X^{5}+X-1\right\rangle$ is a field iff $\left\langle X^{6}-X^{5}+X-1\right\rangle$ is maximal, which holds iff $X^{6}-X^{5}+X-1$ is irreducible. The latter however is not true, since

$$
X^{6}-X^{5}+X-1=(X-1)\left(X^{5}+1\right)
$$

Exercise 9. 1. Find all the genuine ideals $I \unlhd \mathbb{Z}$, such that $\langle 24\rangle \subseteq I$. Which of those are maximal?
2. Find all the genuine ideals $I \unlhd \mathbb{Q}[x]$, such that $\left\langle x^{3}-4 x^{2}+5 x-2\right\rangle \subseteq I$. Which of those are maximal?

Answer. If R is a PID's, we have that if $I, J \unlhd R$, then $I \subseteq J$ iff $I=\langle i\rangle$ and $J=\langle j\rangle$ for some $j \mid i$. It follows that identifying the ideals J such that $I \subseteq J$ is equivalent to identifying the divisors of i.

1. According to the above, $\langle 24\rangle \subseteq I \Longleftrightarrow I=\langle i\rangle$, for some $i \mid 24$. Since $24=2^{3} 3$, the divisors of 24 are

$$
1,2,4,8,3,6,12 \text { and } 24
$$

Since $\langle 1\rangle=\mathbb{Z}$, we exclude 1 . The ideals in question are

$$
\langle 2\rangle,\langle 4\rangle,\langle 8\rangle,\langle 3\rangle,\langle 6\rangle,\langle 12\rangle \text { and }\langle 24\rangle
$$

Since maximal ideals are generated by irreducible elements, the maximal ideals of the above list are $\langle 2\rangle$ and $\langle 3\rangle$.
2. The answer of this item is similar the first one's, once we notice that

$$
x^{3}-4 x^{2}+5 x-2=(x-1)^{2}(x-2)
$$

