UNIVERSITY OF CRETE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
APPLIED ALGEBRA - MEM244 (FALL SEMESTER 2019-20)
LECTURER: G. KAPETANAKIS
2nd exercise set - Answers
Exercise 1. Show that a finite integral domain is a field.
Answer. Let R be a finite integral domain and take some $a \in R \backslash\{0\}$. It suffices to show that there exists some $b \in R$, such that $a b=1$. Take the map

$$
\phi: R \rightarrow R, x \mapsto a x .
$$

Clearly, ϕ is $1-1$ and, since R is finite, it follows that it is also onto, hence a bijection. It follows that there exists some $b \in R$, such that $\phi(b)=1$, i.e., $a b=$ 1.

Exercise 2. Let F be a field. Show that for every $f, g \in F[X]$ and $c \in F$:

1. $(f+g)^{\prime}=f^{\prime}+g^{\prime}$.
2. $(c f)^{\prime}=c f^{\prime}$.
3. $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$.

Answer. Write $f(X)=\sum_{i=0}^{n} f_{i} X^{i}$ and $g(X)=\sum_{i=0}^{n} g_{i} X^{i}$, where $f_{i}, g_{i} \in F$. We have that

$$
\begin{aligned}
(f+g)^{\prime} & =\left(\sum_{i=0}^{n}\left(f_{i}+g_{i}\right) X^{i}\right)^{\prime}=\sum_{i=1}^{n} i\left(f_{i}+g_{i}\right) X^{i-1} \\
& =\sum_{i=1}^{n} i f_{i} X^{i-1}+\sum_{i=1}^{n} i g_{i} X^{i-1}=f^{\prime}+g^{\prime}
\end{aligned}
$$

The other items follow similarly.
Exercise 3. Let \mathbb{F}_{3} be a finite field of 3 elements and take $f(X)=X^{3}-X-1 \in$ $\mathbb{F}_{3}[X]$.

1. Show that f is irreducible over \mathbb{F}_{3}.
2. If α is a root of f, find the degree of the extension $\mathbb{F}_{3}(\alpha) / \mathbb{F}_{3}$ and two bases.
3. Show that $g(X)=X^{3}-X+1 \in \mathbb{F}_{3}[X]$ is irreducible over \mathbb{F}_{3} and show that there exists a root of g in $\mathbb{F}_{3}(\alpha)$.
4. Show that $\mathbb{F}_{3}(\alpha)$ does not contain a root of $h(X)=X^{2}+1 \in \mathbb{F}_{3}[X]$.

Answer. 1. Check that f has no roots in \mathbb{F}_{3} and is of degree 3. The result follows.
2. Since $\left[\mathbb{F}_{3}(\alpha): \mathbb{F}_{3}\right]=3$, we have that an \mathbb{F}_{3}-basis of $\mathbb{F}_{3}(\alpha)$ is the polynomial basis, that is, $\left\{1, \alpha, \alpha^{2}\right\}$. Another basis would be $\left\{1, \alpha+1, \alpha^{2}\right\}$.
3. Check that g has no roots in \mathbb{F}_{3} and is of degree 3, thus is irreducible over \mathbb{F}_{3}. Further, notice that $g(-\alpha)=0$.
4. Check that h has no roots in \mathbb{F}_{3} and is of degree 2, thus is irreducible over \mathbb{F}_{3}. If β is a root of h, then $\mathbb{F}_{3}(\beta)=\mathbb{F}_{3^{2}}$ and if $\beta \in \mathbb{F}_{3}(\alpha)=\mathbb{F}_{3^{3}}$, then $\mathbb{F}_{3^{2}} \subseteq \mathbb{F}_{3^{3}} \Rightarrow 2 \mid 3$, a contradiction.

Exercise 4. Prove that if θ is algebraic over L and the extension L / K is algebraic, then θ is algebraic over K.

Answer. Since θ is algebraic over L, there exists some $f=\sum_{i=0}^{n} f_{i} X^{i} \in L[X]$, such that $f(\theta)=0$. Now, we get the following tower of extensions:

$$
K \subseteq K\left(f_{1}\right) \subseteq \ldots \subseteq K\left(f_{1}, \ldots, f_{n}\right)
$$

Notice that each of these extensions is a simple algebraic extensions, hence finite. It follows that $\left[K\left(f_{1}, \ldots, f_{n}\right): K\right]<\infty$. Now, notice that $f \in K\left(f_{1}, \ldots, f_{n}\right)[X]$ and θ is a root of f, that is, θ is algebraic over $K\left(f_{1}, \ldots, f_{n}\right)$, hence the extension $K\left(f_{1}, \ldots, f_{n}\right.$, theta $) / K\left(f_{1}, \ldots, f_{n}\right)$ is a simple algebraic extension, hence a finite extension.

Now, we get that
$\left[K\left(f_{1}, \ldots, f_{n}, \theta\right): K\right]=\left[K\left(f_{1}, \ldots, f_{n}, \theta\right): K\left(f_{1}, \ldots, f_{n}\right)\right] \cdot\left[K\left(f_{1}, \ldots, f_{n}\right): K\right]$,
where all the numbers on the RHS of the above are finite, so

$$
\left[K\left(f_{1}, \ldots, f_{n}, \theta\right): K\right]<\infty
$$

It follows that the extension is algebraic. The result follows from the fact that $\theta \in K\left(f_{1}, \ldots, f_{n}, \theta\right)$.

Exercise 5. Show that if $[L: K]=p$, where p is prime and $K \subseteq F \subseteq L$ are fields, then $F=K$ or $F=L$.

Answer. We have that

$$
p=[L: K]=[L: F] \cdot[F: K] .
$$

Since p is prime, we have that $[L: F]=1$ or $[F: K]=1$. The result follows.
Exercise 6. Determine all the primitive elements of \mathbb{F}_{7} and \mathbb{F}_{9}.
Answer. We begin with \mathbb{F}_{7}. Since 7 is prime, we have that $\mathbb{F}_{7}^{*}=\{1,2,3,4,5,6\}$ and there are $\phi(6)=2$ primitive elements among them. We explicitly check that $\operatorname{ord}(1)=1$ and $\operatorname{ord}(2)=3$, so 1,2 are not primitive. Then, we check that ord $(3)>$ 3 , so (since the order should divide $\left|\mathbb{F}_{7}^{*}\right|=6$), ord $(3)=6$ and 3 is primitive. The other primitive element is $3^{-1}=5$.

Now, notice that $9=3^{2}$, so we must first construct \mathbb{F}_{9}. Take α a root of the (irreducible) $X^{2}+1 \in \mathbb{F}_{3}[X]$. Then $\mathbb{F}_{9}=\mathbb{F}_{3}(\alpha)$ and

$$
\mathbb{F}_{3}(\alpha)^{*}=\{1,2, \alpha, \alpha+1, \alpha+2,2 \alpha, 2 \alpha+1,2 \alpha+2\} .
$$

Now, we have $\phi(8)=4$ primitive elements. We explicitly check that $1,2, \alpha$ and 2α are not primitive, so the remaining 4 elements should be all primitive.

Exercise 7. Find all the subfields of $\mathbb{F}_{5^{20}}$.
Answer. We have that all the subfields of $\mathbb{F}_{5^{20}}$ are of the form $\mathbb{F}_{5^{d}}$, where $d \mid 20$. Since $5=2^{2} \cdot 5$, the divisors of 20 are $1,2,4,5,10,20$, thus the subfields of $\mathbb{F}_{5^{20}}$ are

$$
\mathbb{F}_{5}, \mathbb{F}_{5^{2}}, \mathbb{F}_{5^{4}}, \mathbb{F}_{5^{5}}, \mathbb{F}_{5^{10}} \text { and } \mathbb{F}_{5^{20}}
$$

Exercise 8. Let $q=p^{n}$, where p is a prime. Show that the algebraic closure of \mathbb{F}_{q} is an infinite field of characteristic p.

Answer. Let $\overline{\mathbb{F}}_{q}$ be the algebraic closure of \mathbb{F}_{q}. Since $\overline{\mathbb{F}}_{q}$ is an extension of \mathbb{F}_{q}, we have that $\operatorname{char} \overline{\mathbb{F}}_{q}=\operatorname{char} \mathbb{F}_{q}=p$.

Now assume that $\overline{\mathbb{F}}_{q}$ is finite. It follows that it is a finite extension of \mathbb{F}_{q}. Let n be the degree of this extension. Then $\overline{\mathbb{F}}_{q}=\mathbb{F}_{q^{n}}$. However, we know that for every positive integer k, there exists some irreducible polynomial of degree k, hence there exists some $f \in \mathbb{F}_{q}[X]$ irreducible of degree $n+1$. If α is a root of f, then, by definition, $\alpha \in \overline{\mathbb{F}}_{q}=\mathbb{F}_{q^{n}}$ and $\mathbb{F}_{q}(\alpha)=\mathbb{F}_{q^{n+1}}$. It follows that $\mathbb{F}_{q^{n+1}} \subseteq \mathbb{F}_{q^{n}}$, a contradiction.

Exercise 9. Let $q>3$ be a prime power. Show that

$$
\sum_{a \in \mathbb{F}_{q}} a^{2}=0
$$

Hint: Prove that

$$
\sum_{a \in \mathbb{F}_{q}} a=0 \quad \text { and } \quad \sum_{\substack{a, b \in \mathbb{F}_{q} \\ a \neq b}} a b=0
$$

and combine the above facts.
Answer. We have that

$$
X^{q}-X=\prod_{a \in \mathbb{F}_{q}}(X-a)
$$

Notice that in the LHS of the above, the coefficient of both X^{q-1} and X^{q-2} is zero (since $q>3$). The corresponding coefficients on the RHS of the above are $\sum_{a \in \mathbb{F}_{q}} a$ and $\sum_{\substack{a, b \in \mathbb{F}_{q} \\ a \neq b}} a b$, hence both these sums are zero. Now, using the above, we get that

$$
\sum_{a \in \mathbb{F}_{q}} a^{2}=\left(\sum_{a \in \mathbb{F}_{q}} a\right) \cdot\left(\sum_{b \in \mathbb{F}_{q}} b\right)-2 \sum_{\substack{a, b \in \mathbb{F}_{q} \\ a \neq b}} a b=0
$$

