UNIVERSITY OF CRETE DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS APPLIED ALGEBRA - MEM244 (FALL SEMESTER 2019-20) LECTURER: G. KAPETANAKIS

3rd set - Answers

Exercise 1. For a finite field \mathbb{F}_q , with q odd, show that an element $a \in \mathbb{F}_q^*$ has a square root in \mathbb{F}_q if and only if $a^{(q-1)/2} = 1$.

Answer. Take some $a \in \mathbb{F}_q^*$ and let ζ be a primitive element of \mathbb{F}_q . It follows that there exists some $1 \leq k \leq q-1$, such that $a = \zeta^k$. We have that

$$\begin{split} a^{(q-1)/2} &= 1 \iff \operatorname{ord}(a) \mid \frac{q-1}{2} \iff \operatorname{ord}(\zeta^k) \mid \frac{q-1}{2} \\ & \longleftrightarrow \quad \frac{\operatorname{ord}(\zeta)}{\gcd(k,\operatorname{ord}(\zeta))} \mid \frac{q-1}{2} \iff \frac{q-1}{\gcd(k,q-1)} \mid \frac{q-1}{2} \\ & \Leftrightarrow \quad 2 \mid \gcd(k,q-1) \iff 2 \mid k. \end{split}$$

The result follows.

Exercise 2. Set $\mathbb{I}_q(n) := \{f \in \mathbb{F}_q[X] \mid f \text{ monic and irreducible of degree } n\}$ and $\pi_q(n) := |\mathbb{I}_q(n)|$.

- 1. Compute the numbers $\pi_3(1)$ and $\pi_3(2)$.
- 2. Find the sets $\mathbb{I}_3(1)$ and $\mathbb{I}_3(2)$.
- 3. Factor $X^9 X$ over \mathbb{F}_3 .

Answer. Recall the formula $\pi_q(n) = \frac{1}{n} \sum_{d|n} \mu(d) q^{n/d}$.

- 1. Using the above, we compute $\pi_3(1) = 3$ and $\pi_3(2) = 3$.
- 2. All polynomials of degree one are irreducible, hence

$$\mathbb{I}_3(1) = \{x, x+1, x+2\}$$

Using the root criterion (as for polynomials of degree 2 or 3), we get that

$$\mathbb{I}_3(2) = \{x^2 + 1, x^2 + x + 2, x^2 + 2x + 2\}$$

3. Recall that, over \mathbb{F}_q , $x^{q^n} - x = \prod_{d|n} \prod_{f \in \mathbb{I}_q(d)} f$. Here, we have that

$$x^{9} - x = \prod_{f \in \mathbb{I}_{3}(1) \cup \mathbb{I}_{3}(2)} f$$

= $x(x+1)(x+2)(x^{2}+1)(x^{2}+x+2)(x^{2}+2x+2).$

Exercise 3. How many elements does \mathbb{F}_{5^6} have, that do not belong in any of its proper subfields? How many of them are non-primitive?

Answer. An element of \mathbb{F}_q , where $q = p^n$ does not belong to any of \mathbb{F}_q 's proper subfields iff its minimum polynomial over \mathbb{F}_p is of degree n. Also, since such polynomials have exactly n roots in \mathbb{F}_q , it follows that the number of such elements is exactly n times the number of monic irreducible polynomials of degree n over \mathbb{F}_p .

In particular, the number of elements of $\mathbb{F}_{5^6},$ that do not belong in any of its proper subfields is

$$6 \cdot \pi_5(6) = \sum_{d|6} \mu(d) 5^{6/d} = 5^6 - 5^3 - 5^2 + 5 = 15480.$$

Moreover, a primitive element of \mathbb{F}_q cannot belong to any proper subfield of \mathbb{F}_q , so all the primitive elements of \mathbb{F}_{5^6} are found among the aforementioned 15480 elements. So,

$$15480 - \phi(5^6 - 1) = 15480 - \phi(15624) = 15480 - 4320 = 11160$$

of them are non-primitive.

Exercise 4. 1. Find the set $D := \{d \in \mathbb{N} : d \mid 30 \text{ and } (d, 3) = 1\}.$

2. For every $d \in D$, write Ψ_d over \mathbb{F}_3 and describe its factorization, where Ψ_n stands for the *n*-th cyclotomic polynomial.

3. Factor $X^{30} - 1$ over \mathbb{F}_3 .

Answer. 1. $D = \{1, 2, 5, 10\}.$

- 2. $\Psi_1 = X 1$, which is irreducible. $\Psi_2 = (X^2 - 1)/\Psi_1 = X + 1$, which is irreducible. $\Psi_5 = (X^5 - 1)/\Psi_1 = X^4 + X^3 + X^2 + X + 1$. Since $\operatorname{ord}_5(3) = 4 = \phi(5)$, we get that Ψ_5 is irreducible. $\Psi_{10} = (X^{10} - 1)/\Psi_1\Psi_2\Psi_5 = X^4 - X^3 + X^2 - X + 1$. Since $\operatorname{ord}_{10}(3) = 4 = \phi(10)$, we get that Ψ_{10} is irreducible.
- 3. Recall that if (q, n) = 1, then $X^n 1 = \prod_{d|n} \Psi_d$. Here, we have that

$$X^{30} - 1 = (X^{10} - 1)^3 = (\Psi_1 \Psi_2 \Psi_5 \Psi_{10})^3.$$

- **Exercise 5.** 1. Find the least prime p, such that $X^{22} + X^{21} + \cdots + X + 1$ is irreducible over \mathbb{F}_p .
 - 2. Find the least prime p > 7 such that $f(X) = X^6 + X^5 + X^4 + X^3 + X^2 + X + 1 \in \mathbb{F}_p[X]$ factors into linear factors. How does it factor over \mathbb{F}_7 ?
- Answer. 1. Notice that the polynomial in question is $\Psi_{23}(X) = (X^{23}-1)/(X-1)$. We are looking for the smallest prime $p \neq 23$, such that $\operatorname{ord}_{23}(p) = \phi(23) = 22$. After a quick computation, we get that $\operatorname{ord}_{23}(2) = \operatorname{ord}_{23}(3) = 11$, but $\operatorname{ord}_{23}(5) = 22$.

2. Notice that $f(X) = \Psi_7(X)$, which factors into linear factors over \mathbb{F}_p , with $p \neq 7$, iff $p \equiv 1 \mod 7$. The least prime satisfying the latter is p = 29. Over \mathbb{F}_7 , we have that

$$\Psi_7(X) = \frac{X^7 - 1}{X - 1} = \frac{(X - 1)^7}{X - 1} = (X - 1)^6.$$

Exercise 6. Show that for $a \in \mathbb{F}_q$ and $n \in \mathbb{N}$ the polynomial $x^{q^n} - x + na$ is divisible by $x^q - x + a$ over \mathbb{F}_q .

Answer. Let β be a root of $f(x)=x^q-x+a,$ i.e., $\beta^q=\beta-a.$ If $g(x)=x^{q^n}-x+na,$ then

$$g(\beta) = \beta^{q^n} - \beta + na$$

= $(\beta - a)^{q^{n-1}} - \beta + na$
= $\beta^{q^{n-1}} - a^{q^{n-1}} - \beta + na$
= $\beta^{q^{n-1}} - \beta + (n-1)a$
= ...
= $\beta - \beta = 0.$

In other words, all the roots of f are also roots of g. Also, since gcd(f, f') = 1, all the roots of f are simple. It follows that $f \mid g$.

Exercise 7. Let $q = p^k$, for some k. Prove that $\operatorname{Tr}(a^{p^n}) = (\operatorname{Tr}(a))^{p^n}$ for all $a \in \mathbb{F}_q$ and $n \in \mathbb{N}$.

Answer. We have that

$$\operatorname{Tr}(a^{p^n}) = \operatorname{Tr}(a^{p^{n-1}})^p = \dots = (\operatorname{Tr}(a))^{p^n}.$$

Exercise 8. Let $q = p^m$. Prove that if $\{a_1, \ldots, a_m\}$ is an \mathbb{F}_p -basis of \mathbb{F}_q , then $\operatorname{Tr}(a_i) \neq 0$ for at least one $1 \leq i \leq m$.

Answer. Suppose that $\operatorname{Tr}(a_i) = 0$, for all $1 \leq i \leq m$. Then, for every $x \in \mathbb{F}_q$, there exist some $x_1, \ldots, x_m \in \mathbb{F}_p$, such that

$$x = \sum_{i=1}^{m} x_i a_i,$$

which implies

$$\operatorname{Tr}(x) = \operatorname{Tr}\left(\sum_{i=1}^{m} x_i a_i\right) = \sum_{i=1}^{m} x_i \operatorname{Tr}(a_i) = 0.$$

The latter contradicts to the fact that $\operatorname{Tr} : \mathbb{F}_q \to \mathbb{F}_p$ is onto.