UNIVERSITY OF CRETE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
APPLIED ALGEBRA - MEM244 (FALL SEMESTER 2019-20)
LECTURER: G. KAPETANAKIS
3rd set - Answers
Exercise 1. For a finite field \mathbb{F}_{q}, with q odd, show that an element $a \in \mathbb{F}_{q}^{*}$ has a square root in \mathbb{F}_{q} if and only if $a^{(q-1) / 2}=1$.
Answer. Take some $a \in \mathbb{F}_{q}^{*}$ and let ζ be a primitive element of \mathbb{F}_{q}. It follows that there exists some $1 \leq k \leq q-1$, such that $a=\zeta^{k}$. We have that

$$
\begin{aligned}
a^{(q-1) / 2}=1 & \Longleftrightarrow \operatorname{ord}(a)\left|\frac{q-1}{2} \Longleftrightarrow \operatorname{ord}\left(\zeta^{k}\right)\right| \frac{q-1}{2} \\
& \Longleftrightarrow \frac{\operatorname{ord}(\zeta)}{\operatorname{gcd}(k, \operatorname{ord}(\zeta))}\left|\frac{q-1}{2} \Longleftrightarrow \frac{q-1}{\operatorname{gcd}(k, q-1)}\right| \frac{q-1}{2} \\
& \Longleftrightarrow 2|\operatorname{gcd}(k, q-1) \Longleftrightarrow 2| k
\end{aligned}
$$

The result follows.
Exercise 2. Set $\mathbb{I}_{q}(n):=\left\{f \in \mathbb{F}_{q}[X] \mid f\right.$ monic and irreducible of degree $\left.n\right\}$ and $\pi_{q}(n):=\left|\mathbb{I}_{q}(n)\right|$.

1. Compute the numbers $\pi_{3}(1)$ and $\pi_{3}(2)$.
2. Find the sets $\mathbb{I}_{3}(1)$ and $\mathbb{I}_{3}(2)$.
3. Factor $X^{9}-X$ over \mathbb{F}_{3}.

Answer. Recall the formula $\pi_{q}(n)=\frac{1}{n} \sum_{d \mid n} \mu(d) q^{n / d}$.

1. Using the above, we compute $\pi_{3}(1)=3$ and $\pi_{3}(2)=3$.
2. All polynomials of degree one are irreducible, hence

$$
\mathbb{I}_{3}(1)=\{x, x+1, x+2\} .
$$

Using the root criterion (as for polynomials of degree 2 or 3), we get that

$$
\mathbb{I}_{3}(2)=\left\{x^{2}+1, x^{2}+x+2, x^{2}+2 x+2\right\} .
$$

3. Recall that, over $\mathbb{F}_{q}, x^{q^{n}}-x=\prod_{d \mid n} \prod_{f \in \mathbb{I}_{q}(d)} f$. Here, we have that

$$
\begin{aligned}
x^{9}-x & =\prod_{f \in \mathbb{I}_{3}(1) \cup \mathbb{I}_{3}(2)} f \\
& =x(x+1)(x+2)\left(x^{2}+1\right)\left(x^{2}+x+2\right)\left(x^{2}+2 x+2\right)
\end{aligned}
$$

Exercise 3. How many elements does $\mathbb{F}_{5^{6}}$ have, that do not belong in any of its proper subfields? How many of them are non-primitive?

Answer. An element of \mathbb{F}_{q}, where $q=p^{n}$ does not belong to any of \mathbb{F}_{q} 's proper subfields iff its minimum polynomial over \mathbb{F}_{p} is of degree n. Also, since such polynomials have exactly n roots in \mathbb{F}_{q}, it follows that the number of such elements is exactly n times the number of monic irreducible polynomials of degree n over \mathbb{F}_{p}.

In particular, the number of elements of \mathbb{F}_{56}, that do not belong in any of its proper subfields is

$$
6 \cdot \pi_{5}(6)=\sum_{d \mid 6} \mu(d) 5^{6 / d}=5^{6}-5^{3}-5^{2}+5=15480
$$

Moreover, a primitive element of \mathbb{F}_{q} cannot belong to any proper subfield of \mathbb{F}_{q}, so all the primitive elements of $\mathbb{F}_{5^{6}}$ are found among the aforementioned 15480 elements. So,

$$
15480-\phi\left(5^{6}-1\right)=15480-\phi(15624)=15480-4320=11160
$$

of them are non-primitive.
Exercise 4. 1. Find the set $D:=\{d \in \mathbb{N}: d \mid 30$ and $(d, 3)=1\}$.
2. For every $d \in D$, write Ψ_{d} over \mathbb{F}_{3} and describe its factorization, where Ψ_{n} stands for the n-th cyclotomic polynomial.
3. Factor $X^{30}-1$ over \mathbb{F}_{3}.

Answer. 1. $D=\{1,2,5,10\}$.
2. $\Psi_{1}=X-1$, which is irreducible.
$\Psi_{2}=\left(X^{2}-1\right) / \Psi_{1}=X+1$, which is irreducible.
$\Psi_{5}=\left(X^{5}-1\right) / \Psi_{1}=X^{4}+X^{3}+X^{2}+X+1$. Since $\operatorname{ord}_{5}(3)=4=\phi(5)$, we get that Ψ_{5} is irreducible.
$\Psi_{10}=\left(X^{10}-1\right) / \Psi_{1} \Psi_{2} \Psi_{5}=X^{4}-X^{3}+X^{2}-X+1$. Since $\operatorname{ord}_{10}(3)=$ $4=\phi(10)$, we get that Ψ_{10} is irreducible.
3. Recall that if $(q, n)=1$, then $X^{n}-1=\prod_{d \mid n} \Psi_{d}$. Here, we have that

$$
X^{30}-1=\left(X^{10}-1\right)^{3}=\left(\Psi_{1} \Psi_{2} \Psi_{5} \Psi_{10}\right)^{3}
$$

Exercise 5. 1. Find the least prime p, such that $X^{22}+X^{21}+\cdots+X+1$ is irreducible over \mathbb{F}_{p}.
2. Find the least prime $p>7$ such that $f(X)=X^{6}+X^{5}+X^{4}+X^{3}+X^{2}+$ $X+1 \in \mathbb{F}_{p}[X]$ factors into linear factors. How does it factor over \mathbb{F}_{7} ?

Answer. 1. Notice that the polynomial in question is $\Psi_{23}(X)=\left(X^{23}-1\right) /(X-$ $1)$. We are looking for the smallest prime $p \neq 23$, such that $\operatorname{ord}_{23}(p)=$ $\phi(23)=22$. After a quick computation, we get that $\operatorname{ord}_{23}(2)=\operatorname{ord}_{23}(3)=$ 11 , but $\operatorname{ord}_{23}(5)=22$.
2. Notice that $f(X)=\Psi_{7}(X)$, which factors into linear factors over \mathbb{F}_{p}, with $p \neq 7$, iff $p \equiv 1 \bmod 7$. The least prime satisfying the latter is $p=29$. Over \mathbb{F}_{7}, we have that

$$
\Psi_{7}(X)=\frac{X^{7}-1}{X-1}=\frac{(X-1)^{7}}{X-1}=(X-1)^{6}
$$

Exercise 6. Show that for $a \in \mathbb{F}_{q}$ and $n \in \mathbb{N}$ the polynomial $x^{q^{n}}-x+n a$ is divisible by $x^{q}-x+a$ over \mathbb{F}_{q}.

Answer. Let β be a root of $f(x)=x^{q}-x+a$, i.e., $\beta^{q}=\beta-a$. If $g(x)=x^{q^{n}}-x+n a$, then

$$
\begin{aligned}
g(\beta) & =\beta^{q^{n}}-\beta+n a \\
& =(\beta-a)^{q^{n-1}}-\beta+n a \\
& =\beta^{q^{n-1}}-a^{q^{n-1}}-\beta+n a \\
& =\beta^{q^{n-1}}-\beta+(n-1) a \\
& =\cdots \\
& =\beta-\beta=0
\end{aligned}
$$

In other words, all the roots of f are also roots of g. Also, since $\operatorname{gcd}\left(f, f^{\prime}\right)=1$, all the roots of f are simple. It follows that $f \mid g$.
Exercise 7. Let $q=p^{k}$, for some k. Prove that $\operatorname{Tr}\left(a^{p^{n}}\right)=(\operatorname{Tr}(a))^{p^{n}}$ for all $a \in \mathbb{F}_{q}$ and $n \in \mathbb{N}$.

Answer. We have that

$$
\operatorname{Tr}\left(a^{p^{n}}\right)=\operatorname{Tr}\left(a^{p^{n-1}}\right)^{p}=\cdots=(\operatorname{Tr}(a))^{p^{n}}
$$

Exercise 8. Let $q=p^{m}$. Prove that if $\left\{a_{1}, \ldots, a_{m}\right\}$ is an \mathbb{F}_{p}-basis of \mathbb{F}_{q}, then $\operatorname{Tr}\left(a_{i}\right) \neq 0$ for at least one $1 \leq i \leq m$.

Answer. Suppose that $\operatorname{Tr}\left(a_{i}\right)=0$, for all $1 \leq i \leq m$. Then, for every $x \in \mathbb{F}_{q}$, there exist some $x_{1}, \ldots, x_{m} \in \mathbb{F}_{p}$, such that

$$
x=\sum_{i=1}^{m} x_{i} a_{i}
$$

which implies

$$
\operatorname{Tr}(x)=\operatorname{Tr}\left(\sum_{i=1}^{m} x_{i} a_{i}\right)=\sum_{i=1}^{m} x_{i} \operatorname{Tr}\left(a_{i}\right)=0
$$

The latter contradicts to the fact that $\operatorname{Tr}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$ is onto.

