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Exercise 1. For the ternary code C = {00122, 12201, 20110, 22000}, use the
nearest neighbor decoding rule to decode the following words:
(a) 01122, (b) 10021, (c) 22022, (d) 20120.

Answer. Name the codewords as follows: c1 = 00122, c2 = 12201, c3 = 20110
and c4 = 22000. Further, name w1 = 01122, w2 = 10021, w3 = 22022 and
w4 = 20120. Notice that

d(w1, c1) = 1, d(w1, c2) = 5, d(w1, c3) = 4, d(w1, c4) = 5,

so, we decode w1 to c1. Next, we have that

d(w2, c1) = 3, d(w2, c2) = 3, d(w2, c3) = 4, d(w2, c4) = 4,

so, in the case of complete decoding we can decode w2 either to c1 or to c2, whilst
in the case of incomplete decoding we request a re-transmission. Next, we have
that

d(w3, c1) = 3, d(w3, c2) = 4, d(w3, c3) = 4, d(w3, c4) = 2,

so, we decode w3 to c2. Finally,

d(w4, c1) = 2, d(w4, c2) = 5, d(w4, c3) = 1, d(w4, c4) = 3,

so, we decode w4 to c3.

Exercise 2. Determine the number of binary (n, 2, n)-codes, for n ≥ 2.

Answer. Let C = {c1, c2} be a binary (n, 2, n)-code. By definition, d(c1, c2) = n,
that is, c1 and c2 differ in all coordinates. This implies that c1 + c2 = (1, . . . , 1),
i.e., c2 is completely determined by c1. It follows that we have 2n choices for the
ordered pair (c1, c2) and since the pair (c1, c2) and (c2, c1) yield the same set, we
have 2n/2 = 2n−1 choices for the code C = {c1, c2}.

Exercise 3. Determine the number of binary [n, n− 1, 2]-codes, for n ≥ 2.

Answer. Let C be a binary [n, n − 1, 2]-code. Let H be a parity check matrix of
C . Because C is a [n, n − 1]-code, H will be a 1 × n matrix over F2. Moreover,
because d(C) > 1, H cannot contain the zero column. It follows that

H = (1 1 · · · 1),

that is, C = 〈(1, . . . , 1)〉⊥. In other words, we have exactly one such code.
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Exercise 4. Determine the number of q-ary [n, k]-codes, where k ≤ n.

Answer. Let C be a q-ary [n, k]-code. We will first show that C has

1

k!

k∏
i=1

(qk − qi−1)

different basis. Indeed, let (c1, . . . , ck) be such that {c1, . . . , ck} is a basis of C .
Notice that we have qk − 1 options for c1 (that is, it has to be non-zero). Then, we
have qk − q options for c2 (that is, it has to be outside 〈c1〉). Similarly, we have
qk − qi−1 options for ci and so on. In total we have

k∏
i=1

(qk − qi−1)

options for (c1, . . . , ck). The result follows, since all the permutations of these
items are counted as distinct k-tuples but yield the same basis.

Next, using similar arguments, one can see that we have

1

k!

k∏
i=1

(qn − qi−1)

ways of choosing a set of k linearly independent elements of Fn
q . Clearly, each

such set produces an [n, k]-code, whilst the same code is produced by a number
of such sets, as proven above. It follows that there are exactly

1
k!

∏k
i=1(q

n − qi−1)
1
k!

∏k
i=1(q

k − qi−1)
=

k−1∏
i=0

qn − qi

qk − qi

q-ary [n, k]-codes.

Exercise 5. Let Ci, i = 1, 2 be linear codes over Fq with parameters [ni, ki, di]
respectively. The direct sum C1⊕C2 is a subspace of Fn1+n2

q . Show that C1⊕C2

is an [n1 + n2, k1 + k2,min{d1, d2}] linear code over Fq .

Answer. Let (a1, b1), (a2, b2) ∈ C1 ⊕ C2 and κ, λ ∈ Fq , where ai ∈ C1 and
bi ∈ C2. Then κ(a1, b1) + λ(a2, b2) = (κa1 + λa2, κb1 + λb2) ∈ C1 ⊕ C2, since
κa1 + λa2 ∈ C1 and κb1 + λb2 ∈ C2.

Clearly, C1 ⊕ C2 has length n1 + n2. Also,

|C1 ⊕ C2| = |C1| · |C2| = qk1qk2 = qk1+k2 .

It follows that dim(C1 ⊕ C2) = k1 + k2.
Finally, for the minimum distance, w.l.o.g. assume that d1 = min{d1, d2}.

Take some a ∈ C1, such that wt(a) = d1. Then (a, 0) ∈ C1 ⊕ C2 (where 0 =
(0, . . . , 0)) and

wt((a, 0)) = wt(a) +wt(0) = d1 + 0 = d1,
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hence d(C1⊕C2) ≤ d1. Also, take some (a, b) ∈ C1⊕C2\{0}, then wt((a, b)) =
wt(a) +wt(b) and:

• If b 6= 0, then wt((a, b)) = wt(a) +wt(b) ≥ wt(b) ≥ d2 ≥ d1.
• If b = 0, then a 6= 0 and wt((a, 0)) = wt(a) +wt(0) = wt(a) ≥ d1.

In any case, wt((a, b)) ≥ d1, which implies d(C1 ⊕ C2) ≥ d1. The result follows.

Exercise 6. Let C be a binary [n, k, d]-code, such that C contains at least one
codeword of odd weight. Let

C ′ := {c ∈ C : wt(c) even}.

Show that C ′ is a binary [n, k − 1, d′]-code, where d′ > d, if d is odd, and d′ = d,
if d is even.

Answer. First, we will show that C ′ is, in fact, a linear code. Let x = (x1, . . . , xn)
and y = (y1, . . . , yn) be two elements of Fn

2 . Define

x ⋆ y = (z1, . . . , zn), (1)

where

zi =

{
1, if xi = yi = 1,

0, otherwise.

It is now trivial to check that

wt(x+ y) = wt(x) +wt(y)− 2wt(x ⋆ y). (2)

The latter implies that C ′ is closed under addition, hence (since we are over F2) it
is a linear code.

Clearly C ′ has length n. About the dimension, it suffices to show that C ′

contains exactly half of the codewords of C . Define

C ′′ = {c ∈ C : wt(c) is odd}.

Clearly C ′ ∪ C ′′ = C and C ′ ∩ C ′′ = ∅, in other words, it suffices to show that
|C ′| = |C ′′|. The statement implies that C ′′ 6= ∅. Take some w ∈ C ′′ and set

ϕ : C ′ → C ′′, x 7→ x+ w.

Equation (2) implies that ϕ is well-defined, while it is trivial to check that it is a
bijection. It follows that |C ′| = |C ′′|.

Finally, we move our attention to the minimum distance. SinceC ′ is a subcode
ofC , d′ ≥ d. However, by definition, the codewords ofC ofweight d are codewords
of C ′ if and only if d is even. The desired result follows.
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Exercise 7. 1. Show that every codeword in a self-orthogonal binary code has
even weight.

2. Show that every codeword in a self-orthogonal ternary code has weight
divisible by 3.

3. Let x, y be codewords of a self-orthogonal binary code, such that bothwt(x)
and wt(y) are divisible by 4. Show that 4 | wt(x+ y).

Answer. 1. Take w = (w1, . . . , wn) be a codeword of a self-orthogonal binary
code. The support of some x ∈ Fqn consists of the non-zero coordinates
of x and is denoted as supp(x). Assume that supp(w) = {ws1 , . . . , wsℓ}.
Clearly, wt(w) = |supp(w)| = ℓ and wsj = 1 for 1 ≤ j ≤ ℓ. We have that

w · w = 0 ⇐⇒
n∑

i=1

w2
i = 0 ⇐⇒

ℓ∑
j=1

w2
sj = 0 ⇐⇒ ℓ = 0 (in F2).

The result follows.

2. Take w = (w1, . . . , wn) be a codeword of a self-orthogonal ternary code.
Assume that supp(w) = {ws1 , . . . , wsℓ}. Clearly, wt(w) = |supp(w)| = ℓ
and wsj = ±1 ⇐⇒ w2

sj = 1 for 1 ≤ j ≤ ℓ. We have that

w · w = 0 ⇐⇒
n∑

i=1

w2
i = 0 ⇐⇒

ℓ∑
j=1

w2
sj = 0 ⇐⇒ ℓ = 0 (in F3).

The result follows.

3. Since the code is self-orthogonal, we have that

x · y = 0 ⇐⇒ wt(x ⋆ y) = 0 (in F2),

where x ⋆ y as defined in (1). It follows that wt(x ⋆ y) is even. Now, (2)
implies that 4 | wt(x+ y).

Exercise 8. Let C be a self-dual binary [n, k, d]-code.

1. Show that (1, 1, . . . , 1) ∈ C .
2. Show that either all the codewords of C have weight divisible by 4, or

exactly half of them have weight divisible by 4.
3. Suppose n = 6. Determine d.

Answer. 1. For every w ∈ C , we have that

(1, . . . , 1) · w = w · w = 0,

that is (1 . . . , 1) ∈ C⊥. The result follows from the fact that C = C⊥.
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2. Suppose that C contains some w ∈ C , such that 4 ∤ wt(w). Set

C ′ = {c ∈ C : 4 | wt(c)} and C ′′ = {c ∈ C : 4 ∤ wt(c)}.

For our purposes, since clearly C ′ ∪ C ′′ = C and C ′ ∩ C ′′ = ∅, it suffices
to show that |C ′| = |C ′′|. Let

ϕ : C ′ → C ′′, x 7→ x+ w.

Equation (2) implies that ϕ is well-defined and it is clearly a bijection. The
result follows.

3. From the previous items, we have that d has to be even, i.e., d = 2, 4 or
6. Moreover, since C is a binary self-dual code of length 6, we have that
k = dim(C) = 6/2 = 3, that is, C has qk = 8 codewords.
Clearly, d 6= 6, since in this case C can only contain the all-zero and all-
one words. Next, assume that d = 4. Then C contains some c of weight 4.
Also, from the first item, (1, . . . , 1) ∈ C , that is, c′ = (1, . . . , 1) + c ∈ C .
However, wt(c′) = 2, a contradiction. It follows that d = 2.
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