## UNIVERSITY OF CRETE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
APPLIED ALGEBRA - MEM244 (FALL SEMESTER 2019-20)
LECTURER: G. KAPETANAKIS
4th set - Answers
Exercise 1. For the ternary code $C=\{00122,12201,20110,22000\}$, use the nearest neighbor decoding rule to decode the following words:
(a) 01122 , (b) 10021, (c) 22022, (d) 20120.

Answer. Name the codewords as follows: $c_{1}=00122, c_{2}=12201, c_{3}=20110$ and $c_{4}=22000$. Further, name $w_{1}=01122, w_{2}=10021, w_{3}=22022$ and $w_{4}=20120$. Notice that

$$
d\left(w_{1}, c_{1}\right)=1, d\left(w_{1}, c_{2}\right)=5, d\left(w_{1}, c_{3}\right)=4, d\left(w_{1}, c_{4}\right)=5
$$

so, we decode $w_{1}$ to $c_{1}$. Next, we have that

$$
d\left(w_{2}, c_{1}\right)=3, d\left(w_{2}, c_{2}\right)=3, d\left(w_{2}, c_{3}\right)=4, d\left(w_{2}, c_{4}\right)=4
$$

so, in the case of complete decoding we can decode $w_{2}$ either to $c_{1}$ or to $c_{2}$, whilst in the case of incomplete decoding we request a re-transmission. Next, we have that

$$
d\left(w_{3}, c_{1}\right)=3, d\left(w_{3}, c_{2}\right)=4, d\left(w_{3}, c_{3}\right)=4, d\left(w_{3}, c_{4}\right)=2
$$

so, we decode $w_{3}$ to $c_{2}$. Finally,

$$
d\left(w_{4}, c_{1}\right)=2, d\left(w_{4}, c_{2}\right)=5, d\left(w_{4}, c_{3}\right)=1, d\left(w_{4}, c_{4}\right)=3
$$

so, we decode $w_{4}$ to $c_{3}$.
Exercise 2. Determine the number of binary $(n, 2, n)$-codes, for $n \geq 2$.
Answer. Let $C=\left\{c_{1}, c_{2}\right\}$ be a binary $(n, 2, n)$-code. By definition, $d\left(c_{1}, c_{2}\right)=n$, that is, $c_{1}$ and $c_{2}$ differ in all coordinates. This implies that $c_{1}+c_{2}=(1, \ldots, 1)$, i.e., $c_{2}$ is completely determined by $c_{1}$. It follows that we have $2^{n}$ choices for the ordered pair $\left(c_{1}, c_{2}\right)$ and since the pair $\left(c_{1}, c_{2}\right)$ and $\left(c_{2}, c_{1}\right)$ yield the same set, we have $2^{n} / 2=2^{n-1}$ choices for the code $C=\left\{c_{1}, c_{2}\right\}$.

Exercise 3. Determine the number of binary $[n, n-1,2]$-codes, for $n \geq 2$.
Answer. Let $C$ be a binary $[n, n-1,2]$-code. Let $H$ be a parity check matrix of $C$. Because $C$ is a $[n, n-1]$-code, $H$ will be a $1 \times n$ matrix over $\mathbb{F}_{2}$. Moreover, because $d(C)>1, H$ cannot contain the zero column. It follows that

$$
H=\left(\begin{array}{llll}
1 & 1 & \cdots & 1
\end{array}\right)
$$

that is, $C=\langle(1, \ldots, 1)\rangle^{\perp}$. In other words, we have exactly one such code.

Exercise 4. Determine the number of $q$-ary $[n, k]$-codes, where $k \leq n$.
Answer. Let $C$ be a $q$-ary $[n, k]$-code. We will first show that $C$ has

$$
\frac{1}{k!} \prod_{i=1}^{k}\left(q^{k}-q^{i-1}\right)
$$

different basis. Indeed, let $\left(c_{1}, \ldots, c_{k}\right)$ be such that $\left\{c_{1}, \ldots, c_{k}\right\}$ is a basis of $C$. Notice that we have $q^{k}-1$ options for $c_{1}$ (that is, it has to be non-zero). Then, we have $q^{k}-q$ options for $c_{2}$ (that is, it has to be outside $\left\langle c_{1}\right\rangle$ ). Similarly, we have $q^{k}-q^{i-1}$ options for $c_{i}$ and so on. In total we have

$$
\prod_{i=1}^{k}\left(q^{k}-q^{i-1}\right)
$$

options for $\left(c_{1}, \ldots, c_{k}\right)$. The result follows, since all the permutations of these items are counted as distinct $k$-tuples but yield the same basis.

Next, using similar arguments, one can see that we have

$$
\frac{1}{k!} \prod_{i=1}^{k}\left(q^{n}-q^{i-1}\right)
$$

ways of choosing a set of $k$ linearly independent elements of $\mathbb{F}_{q}^{n}$. Clearly, each such set produces an $[n, k]$-code, whilst the same code is produced by a number of such sets, as proven above. It follows that there are exactly

$$
\frac{\frac{1}{k!} \prod_{i=1}^{k}\left(q^{n}-q^{i-1}\right)}{\frac{1}{k!} \prod_{i=1}^{k}\left(q^{k}-q^{i-1}\right)}=\prod_{i=0}^{k-1} \frac{q^{n}-q^{i}}{q^{k}-q^{i}}
$$

$q$-ary $[n, k]$-codes.
Exercise 5. Let $C_{i}, i=1,2$ be linear codes over $\mathbb{F}_{q}$ with parameters $\left[n_{i}, k_{i}, d_{i}\right]$ respectively. The direct sum $C_{1} \oplus C_{2}$ is a subspace of $\mathbb{F}_{q}^{n_{1}+n_{2}}$. Show that $C_{1} \oplus C_{2}$ is an $\left[n_{1}+n_{2}, k_{1}+k_{2}, \min \left\{d_{1}, d_{2}\right\}\right]$ linear code over $\mathbb{F}_{q}$.

Answer. Let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in C_{1} \oplus C_{2}$ and $\kappa, \lambda \in \mathbb{F}_{q}$, where $a_{i} \in C_{1}$ and $b_{i} \in C_{2}$. Then $\kappa\left(a_{1}, b_{1}\right)+\lambda\left(a_{2}, b_{2}\right)=\left(\kappa a_{1}+\lambda a_{2}, \kappa b_{1}+\lambda b_{2}\right) \in C_{1} \oplus C_{2}$, since $\kappa a_{1}+\lambda a_{2} \in C_{1}$ and $\kappa b_{1}+\lambda b_{2} \in C_{2}$.

Clearly, $C_{1} \oplus C_{2}$ has length $n_{1}+n_{2}$. Also,

$$
\left|C_{1} \oplus C_{2}\right|=\left|C_{1}\right| \cdot\left|C_{2}\right|=q^{k_{1}} q^{k_{2}}=q^{k_{1}+k_{2}}
$$

It follows that $\operatorname{dim}\left(C_{1} \oplus C_{2}\right)=k_{1}+k_{2}$.
Finally, for the minimum distance, w.l.o.g. assume that $d_{1}=\min \left\{d_{1}, d_{2}\right\}$. Take some $a \in C_{1}$, such that $\operatorname{wt}(a)=d_{1}$. Then $(a, \mathbf{0}) \in C_{1} \oplus C_{2}$ (where $\mathbf{0}=$ $(0, \ldots, 0))$ and

$$
\mathrm{wt}((a, \mathbf{0}))=\mathrm{wt}(a)+\mathrm{wt}(\mathbf{0})=d_{1}+0=d_{1}
$$

hence $d\left(C_{1} \oplus C_{2}\right) \leq d_{1}$. Also, take some $(a, b) \in C_{1} \oplus C_{2} \backslash\{\mathbf{0}\}$, then wt $((a, b))=$ $\mathrm{wt}(a)+\mathrm{wt}(b)$ and:

- If $b \neq \mathbf{0}$, then $\mathrm{wt}((a, b))=\mathrm{wt}(a)+\mathrm{wt}(b) \geq \mathrm{wt}(b) \geq d_{2} \geq d_{1}$.
- If $b=\mathbf{0}$, then $a \neq \mathbf{0}$ and $\mathrm{wt}((a, \mathbf{0}))=\mathrm{wt}(a)+\mathrm{wt}(\mathbf{0})=\mathrm{wt}(a) \geq d_{1}$.

In any case, $\mathrm{wt}((a, b)) \geq d_{1}$, which implies $d\left(C_{1} \oplus C_{2}\right) \geq d_{1}$. The result follows.

Exercise 6. Let $C$ be a binary $[n, k, d]$-code, such that $C$ contains at least one codeword of odd weight. Let

$$
C^{\prime}:=\{c \in C: \text { wt }(c) \text { even }\}
$$

Show that $C^{\prime}$ is a binary $\left[n, k-1, d^{\prime}\right]$-code, where $d^{\prime}>d$, if $d$ is odd, and $d^{\prime}=d$, if $d$ is even.

Answer. First, we will show that $C^{\prime}$ is, in fact, a linear code. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ be two elements of $\mathbb{F}_{2}^{n}$. Define

$$
\begin{equation*}
x \star y=\left(z_{1}, \ldots, z_{n}\right) \tag{1}
\end{equation*}
$$

where

$$
z_{i}= \begin{cases}1, & \text { if } x_{i}=y_{i}=1 \\ 0, & \text { otherwise }\end{cases}
$$

It is now trivial to check that

$$
\begin{equation*}
\mathrm{wt}(x+y)=\mathrm{wt}(x)+\mathrm{wt}(y)-2 \mathrm{wt}(x \star y) \tag{2}
\end{equation*}
$$

The latter implies that $C^{\prime}$ is closed under addition, hence (since we are over $\mathbb{F}_{2}$ ) it is a linear code.

Clearly $C^{\prime}$ has length $n$. About the dimension, it suffices to show that $C^{\prime}$ contains exactly half of the codewords of $C$. Define

$$
C^{\prime \prime}=\{c \in C: \mathrm{wt}(c) \text { is odd }\}
$$

Clearly $C^{\prime} \cup C^{\prime \prime}=C$ and $C^{\prime} \cap C^{\prime \prime}=\emptyset$, in other words, it suffices to show that $\left|C^{\prime}\right|=\left|C^{\prime \prime}\right|$. The statement implies that $C^{\prime \prime} \neq \emptyset$. Take some $w \in C^{\prime \prime}$ and set

$$
\phi: C^{\prime} \rightarrow C^{\prime \prime}, x \mapsto x+w
$$

Equation (2) implies that $\phi$ is well-defined, while it is trivial to check that it is a bijection. It follows that $\left|C^{\prime}\right|=\left|C^{\prime \prime}\right|$.

Finally, we move our attention to the minimum distance. Since $C^{\prime}$ is a subcode of $C, d^{\prime} \geq d$. However, by definition, the codewords of $C$ of weight $d$ are codewords of $C^{\prime}$ if and only if $d$ is even. The desired result follows.

Exercise 7. 1. Show that every codeword in a self-orthogonal binary code has even weight.
2. Show that every codeword in a self-orthogonal ternary code has weight divisible by 3 .
3. Let $x, y$ be codewords of a self-orthogonal binary code, such that both $\mathrm{wt}(x)$ and $\mathrm{wt}(y)$ are divisible by 4 . Show that $4 \mid \mathrm{wt}(x+y)$.

Answer. 1. Take $w=\left(w_{1}, \ldots, w_{n}\right)$ be a codeword of a self-orthogonal binary code. The support of some $x \in \mathbb{F}_{q^{n}}$ consists of the non-zero coordinates of $x$ and is denoted as $\operatorname{supp}(x)$. Assume that $\operatorname{supp}(w)=\left\{w_{s_{1}}, \ldots, w_{s_{\ell}}\right\}$. Clearly, $\operatorname{wt}(w)=|\operatorname{supp}(w)|=\ell$ and $w_{s_{j}}=1$ for $1 \leq j \leq \ell$. We have that

$$
w \cdot w=0 \Longleftrightarrow \sum_{i=1}^{n} w_{i}^{2}=0 \Longleftrightarrow \sum_{j=1}^{\ell} w_{s_{j}}^{2}=0 \Longleftrightarrow \ell=0\left(\text { in } \mathbb{F}_{2}\right)
$$

The result follows.
2. Take $w=\left(w_{1}, \ldots, w_{n}\right)$ be a codeword of a self-orthogonal ternary code. Assume that $\operatorname{supp}(w)=\left\{w_{s_{1}}, \ldots, w_{s_{\ell}}\right\}$. Clearly, $\operatorname{wt}(w)=|\operatorname{supp}(w)|=\ell$ and $w_{s_{j}}= \pm 1 \Longleftrightarrow w_{s_{j}}^{2}=1$ for $1 \leq j \leq \ell$. We have that

$$
w \cdot w=0 \Longleftrightarrow \sum_{i=1}^{n} w_{i}^{2}=0 \Longleftrightarrow \sum_{j=1}^{\ell} w_{s_{j}}^{2}=0 \Longleftrightarrow \ell=0\left(\text { in } \mathbb{F}_{3}\right)
$$

The result follows.
3. Since the code is self-orthogonal, we have that

$$
x \cdot y=0 \Longleftrightarrow \mathrm{wt}(x \star y)=0\left(\text { in } \mathbb{F}_{2}\right)
$$

where $x \star y$ as defined in (1). It follows that $\mathrm{wt}(x \star y)$ is even. Now, (2) implies that $4 \mid \mathrm{wt}(x+y)$.

Exercise 8. Let $C$ be a self-dual binary $[n, k, d]$-code.

1. Show that $(1,1, \ldots, 1) \in C$.
2. Show that either all the codewords of $C$ have weight divisible by 4 , or exactly half of them have weight divisible by 4 .
3. Suppose $n=6$. Determine $d$.

Answer. 1. For every $w \in C$, we have that

$$
(1, \ldots, 1) \cdot w=w \cdot w=0
$$

that is $(1 \ldots, 1) \in C^{\perp}$. The result follows from the fact that $C=C^{\perp}$.
2. Suppose that $C$ contains some $w \in C$, such that $4 \nmid \mathrm{wt}(w)$. Set

$$
C^{\prime}=\{c \in C: 4 \mid \operatorname{wt}(c)\} \text { and } C^{\prime \prime}=\{c \in C: 4 \nmid \mathrm{wt}(c)\} .
$$

For our purposes, since clearly $C^{\prime} \cup C^{\prime \prime}=C$ and $C^{\prime} \cap C^{\prime \prime}=\emptyset$, it suffices to show that $\left|C^{\prime}\right|=\left|C^{\prime \prime}\right|$. Let

$$
\phi: C^{\prime} \rightarrow C^{\prime \prime}, x \mapsto x+w .
$$

Equation (2) implies that $\phi$ is well-defined and it is clearly a bijection. The result follows.
3. From the previous items, we have that $d$ has to be even, i.e., $d=2,4$ or 6 . Moreover, since $C$ is a binary self-dual code of length 6 , we have that $k=\operatorname{dim}(C)=6 / 2=3$, that is, $C$ has $q^{k}=8$ codewords.
Clearly, $d \neq 6$, since in this case $C$ can only contain the all-zero and allone words. Next, assume that $d=4$. Then $C$ contains some $c$ of weight 4 . Also, from the first item, $(1, \ldots, 1) \in C$, that is, $c^{\prime}=(1, \ldots, 1)+c \in C$. However, $\mathrm{wt}\left(c^{\prime}\right)=2$, a contradiction. It follows that $d=2$.

