UNIVERSITY OF CRETE

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS
APPLIED ALGEBRA - MEM244 (FALL SEMESTER 2019-20)
LECTURER: G. KAPETANAKIS
5th set - Answers
Exercise 1. Let C be the linear code over \mathbb{F}_{9} with parity-check matrix

$$
H=\left(\begin{array}{lllll}
1 & 0 & 1 & \alpha & 1 \\
0 & 1 & 1 & 1 & \alpha
\end{array}\right)
$$

where α is a root of $X^{2}+1 \in \mathbb{F}_{3}[X]$. Find two non-zero codewords of C of minimum weight.

Answer. First, we note that $X^{2}+1$ is in fact irreducible over \mathbb{F}_{3}, since it has no roots in \mathbb{F}_{3}.

Next, it is clear that every pair of columns of H are linearly independent, whilst the three first columns of H are linearly dependent. It follows that $d(C)=$ 3. Moreover, H is a generator matrix of C^{\perp} and as a generator matrix, it is in standard form. It follows that a parity-check matrix of C^{\perp}, i.e., a generator matrix of C is

$$
G=\left(\begin{array}{ccccc}
2 & 2 & 1 & 0 & 0 \\
2 \alpha & 2 & 0 & 1 & 0 \\
2 & 2 \alpha & 0 & 0 & 1
\end{array}\right)
$$

It follows that two words of minimum weight are $w_{1}=(2,2,1,0,0)$ and $w_{2}=$ ($2 \alpha, 2,0,1,0$).

Exercise 2. Let G and G^{\prime} be generator matrices of the linear code C. Show that if both G and G^{\prime} are in standard form then $G=G^{\prime}$.

Answer. Set $k=\operatorname{dim}(C)$. Let g_{i}, g_{i}^{\prime} be the i-th row of G and G^{\prime} respectively. Since $G \neq G^{\prime}$, we have that $g_{\ell} \neq g_{\ell}^{\prime}$ for some ℓ. The facts that g_{ℓ} and g_{ℓ}^{\prime} are both the ℓ-th rows of generator matrices in standard form and that $g_{\ell} \neq g_{\ell}^{\prime}$, imply that

$$
g_{\ell}-g_{\ell}^{\prime}=(\underbrace{0, \ldots, 0}_{k-\text { times }}, h_{k+1}, \ldots, h_{n}) \in C \backslash\{\mathbf{0}\} .
$$

However, the fact that C admits a generator matrix in standard form implies that the only codeword with zeros in all of its first k positions is the all-zero word, a contradiction.

Exercise 3. Construct a binary code C of length 6 as follows: for every $\left(x_{1}, x_{2}, x_{3}\right) \in$ \mathbb{F}_{2}^{3}, construct a 6-bit word $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in C$, where

$$
\begin{aligned}
& x_{4}=x_{1}+x_{2}+x_{3}, \\
& x_{5}=x_{1}+x_{3}, \\
& x_{6}=x_{2}+x_{3} .
\end{aligned}
$$

1. Show that C is a linear code.
2. Find a generator matrix and a parity-check matrix for C.
3. Decode the words $w_{1}=111111$ and $w_{2}=101010$.

Answer. It is clear that the typical codeword of C is of the form

$$
c=x_{1}(1,0,0,1,1,0)+x_{2}(0,1,0,1,0,1)+x_{3}(0,0,1,1,1,1), \quad x_{i} \in \mathbb{F}_{2}
$$

It follows that $C=\langle 100110,010101,001111\rangle$, which is clearly a linear code with generator matrix

$$
G=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Since G is in standard form, we can immediately construct a parity-check matrix of C in standard form as follows:

$$
H=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

It follows that C is a binary $[6,3,3]$-code. We will now use cosets decoding to decode w_{1} and w_{2}. First, we list the coset of C as follows, where the corresponding coset leaders are underlined:

$$
\begin{aligned}
& C+000000=\{\underline{000000}, 100110,010101,001111,110011,101001,011010,111100\}, \\
& C+000001=\{\underline{000001}, 100111,010100,001110,110010,101000,011011,111101\}, \\
& C+000010=\{\underline{000010}, 100100,010111,001101,110001,101011,011000,111110\}, \\
& C+000100=\{\underline{000100}, 100010,010001,001011,110111,101101,011110,111000\}, \\
& C+001000=\{\underline{001000}, 101110,011101,000111,111011,100001,010010,110100\}, \\
& C+010000=\{\underline{010000}, 110110,000101,011111,100011,111001,001010,101100\}, \\
& C+100000=\{\underline{100000}, 000110,110101,101111,010011,001001,111010,011100\}, \\
& C+110000=\{\underline{110000}, 010110,100101,111111, \underline{000011}, 011001,101010, \underline{001100}\} .
\end{aligned}
$$

We note that both w_{1} and w_{2} belong in the last coset, which admits three leaders, that is, in the case of incomplete decoding we request a retransmission. In the case of complete decoding, we may (arbitrarily) choose $e=110000$ for both of them and decode to $c_{1}=001111$ and $c_{2}=011010$ respectively.

Exercise 4. Let C be the binary linear code with parity-check matrix

$$
H=\left(\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

1. Write a generator matrix of C and find the parameters of C. How many errors does C correct?
2. Decode the words $w_{1}=110110$ and $w_{2}=011011$, using coset decoding.
3. Construct a syndrome look-up table and use it to decode the words $w_{3}=$ 100100 and $w_{4}=011101$.

Answer. We note that the parity-check matrix H is in standard form, so we can easily construct the following generator matrix in standard form:

$$
G=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

From the parity-check matrix, it is clear that C is a binary $[6,3,3]$-code.
We shall now decode w_{1} and w_{2} using coset decoding. So, we list the cosets of C as follows, where the corresponding coset leaders are underlined:

$$
\begin{aligned}
& C+000000=\{\underline{000000}, 100110,010101,001011,110011,101101,011110,111000\}, \\
& C+000001=\{\underline{000001}, 100111,010100,001010,110010,101100,011111,111001\}, \\
& C+000010=\{\underline{000010}, 100100,010111,001001,110001,101111,011100,111010\}, \\
& C+000100=\{\underline{000100}, 100010,010001,001111,11011,101001,011010,111100\}, \\
& C+001000=\{\underline{001000}, 101110,011101,000011,111011,100101,010110,110000\}, \\
& C+010000=\{\underline{010000}, 110110,000101,011011,100011,111101,001110,101000\}, \\
& C+100000=\{\underline{100000}, 000110,110101,101011,010011,001101,111110,011000\}, \\
& C+100001=\{\underline{100001}, 000111,110100,101010, \underline{010010}, \underline{001100}, 11111,011001\} .
\end{aligned}
$$

Observe that both w_{1} and w_{2} belong in the same coset that has the unique leader $e=010000$, so we decode to $c_{1}=100110$ and $c_{2}=001011$ respectively.

Using the above list, we can construct the following syndrome look-up table ${ }^{1}$:

Coset leader	Syndrome
000000	000
000001	001
000010	010
000100	100
001000	011
010000	101
100000	110
$\mathbf{1 0 0 0 0 1}$	$\mathbf{1 1 1}$

The last entry of the above is in bold to indicate that fact that the corresponding coset has multiple leaders. Next, we compute

$$
S\left(w_{3}\right)=w_{3} \cdot H^{T}=010 \quad \text { and } \quad S\left(w_{4}\right)=w_{4} \cdot H^{T}=011
$$

From the syndrome look-up table, we get that the corresponding errors are $e_{1}=$ 000010 and $e_{2}=0010000$, so we decode to $c_{1}=100110$ and $c_{2}=010101$ respectively.

[^0]Exercise 5. Prove that $A_{2}(5,4)=B_{2}(5,4)=2$.
Answer. First, we observe that the binary code $C^{\prime}=\langle 11110\rangle$ is a linear binary $(5,2,4)$-code. It follows that

$$
\begin{equation*}
2 \leq B_{2}(5,4) \tag{1}
\end{equation*}
$$

Now, let C be a binary code of length 5 , such that $d(C)=4$. Assume that $c=\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right) \in C$. Since $d(C)=4$, another codeword of C has to be one of $\left(c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}, c_{4}^{\prime}, c_{5}\right),\left(c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}, c_{4}, c_{5}^{\prime}\right),\left(c_{1}^{\prime}, c_{2}^{\prime}, c_{3}, c_{4}^{\prime}, c_{5}^{\prime}\right),\left(c_{1}^{\prime}, c_{2}, c_{3}^{\prime}, c_{4}^{\prime}, c_{5}^{\prime}\right)$, $\left(c_{1}, c_{2}^{\prime}, c_{3}^{\prime}, c_{4}^{\prime}, c_{5}^{\prime}\right)$ or $\left(c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}, c_{4}^{\prime}, c_{5}^{\prime}\right)$, where $c_{i}^{\prime}:=1+c_{i}$. However, we easily check that for every pair of these words, their Hamming distance is at most 3. In other words, C can contain at most one of them. It follows that $|C| \leq 2$, which implies

$$
\begin{equation*}
A_{2}(5,4) \leq 2 \tag{2}
\end{equation*}
$$

Equations (1) and (2), combined with the fact that $B_{2}(5,4) \leq A_{2}(5,4)$, yield the desired result.

[^0]: ${ }^{1}$ Note that the construction of the syndrome look-up table can also be done without the above list, as mentioned in the lectures.

