UNIVERSITY OF CRETE DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS APPLIED ALGEBRA - MEM244 (FALL SEMESTER 2019-20) LECTURER: G. KAPETANAKIS

5th set - Answers

Exercise 1. Let *C* be the linear code over \mathbb{F}_9 with parity-check matrix

$$H = \left(\begin{array}{rrrr} 1 & 0 & 1 & \alpha & 1 \\ 0 & 1 & 1 & 1 & \alpha \end{array}\right),$$

where α is a root of $X^2 + 1 \in \mathbb{F}_3[X]$. Find two non-zero codewords of C of minimum weight.

Answer. First, we note that $X^2 + 1$ is in fact irreducible over \mathbb{F}_3 , since it has no roots in \mathbb{F}_3 .

Next, it is clear that every pair of columns of H are linearly independent, whilst the three first columns of H are linearly dependent. It follows that d(C) =3. Moreover, H is a generator matrix of C^{\perp} and as a generator matrix, it is in standard form. It follows that a parity-check matrix of C^{\perp} , i.e., a generator matrix of C is

$$G = \begin{pmatrix} 2 & 2 & 1 & 0 & 0 \\ 2\alpha & 2 & 0 & 1 & 0 \\ 2 & 2\alpha & 0 & 0 & 1 \end{pmatrix}.$$

It follows that two words of minimum weight are $w_1 = (2, 2, 1, 0, 0)$ and $w_2 = (2\alpha, 2, 0, 1, 0)$.

Exercise 2. Let G and G' be generator matrices of the linear code C. Show that if both G and G' are in standard form then G = G'.

Answer. Set $k = \dim(C)$. Let g_i, g'_i be the *i*-th row of G and G' respectively. Since $G \neq G'$, we have that $g_{\ell} \neq g'_{\ell}$ for some ℓ . The facts that g_{ℓ} and g'_{ℓ} are both the ℓ -th rows of generator matrices in standard form and that $g_{\ell} \neq g'_{\ell}$, imply that

$$g_{\ell} - g'_{\ell} = (\underbrace{0, \dots, 0}_{k-\text{times}}, h_{k+1}, \dots, h_n) \in C \setminus \{\mathbf{0}\}.$$

However, the fact that C admits a generator matrix in standard form implies that the only codeword with zeros in all of its first k positions is the all-zero word, a contradiction.

Exercise 3. Construct a binary code *C* of length 6 as follows: for every $(x_1, x_2, x_3) \in \mathbb{F}_2^3$, construct a 6-bit word $(x_1, x_2, x_3, x_4, x_5, x_6) \in C$, where

$$x_4 = x_1 + x_2 + x_3$$

 $x_5 = x_1 + x_3,$
 $x_6 = x_2 + x_3.$

- 1. Show that C is a linear code.
- 2. Find a generator matrix and a parity-check matrix for C.
- 3. Decode the words $w_1 = 111111$ and $w_2 = 101010$.

Answer. It is clear that the typical codeword of C is of the form

$$c = x_1(1, 0, 0, 1, 1, 0) + x_2(0, 1, 0, 1, 0, 1) + x_3(0, 0, 1, 1, 1, 1), \quad x_i \in \mathbb{F}_2.$$

It follows that $C = \langle 100110, 010101, 001111 \rangle$, which is clearly a linear code with generator matrix

Since G is in standard form, we can immediately construct a parity-check matrix of C in standard form as follows:

It follows that C is a binary [6, 3, 3]-code. We will now use cosets decoding to decode w_1 and w_2 . First, we list the coset of C as follows, where the corresponding coset leaders are underlined:

$$\begin{split} C + 000000 &= \{ \underline{000000}, 100110, 010101, 001111, 110011, 101001, 011010, 111100 \}, \\ C + 000001 &= \{ \underline{000001}, 100111, 010100, 001110, 110010, 101000, 011011, 111101 \}, \\ C + 000010 &= \{ \underline{000010}, 100100, 010111, 001101, 110001, 101011, 011100, 111100 \}, \\ C + 000100 &= \{ \underline{000100}, 100010, 010001, 001011, 110111, 101101, 011110, 111000 \}, \\ C + 001000 &= \{ \underline{001000}, 101110, 011101, 000111, 111011, 100011, 010010, 110100 \}, \\ C + 010000 &= \{ \underline{010000}, 110110, 000101, 011111, 100011, 111001, 001010, 101100 \}, \\ C + 100000 &= \{ \underline{100000}, 000110, 110101, 101111, 000011, 001001, 111010, 011100 \}, \\ C + 110000 &= \{ \underline{110000}, 010110, 100101, 111111, 000011, 011001, 101010, 001100 \}. \end{split}$$

We note that both w_1 and w_2 belong in the last coset, which admits three leaders, that is, in the case of incomplete decoding we request a retransmission. In the case of complete decoding, we may (arbitrarily) choose e = 110000 for both of them and decode to $c_1 = 001111$ and $c_2 = 011010$ respectively.

Exercise 4. Let C be the binary linear code with parity-check matrix

1. Write a generator matrix of C and find the parameters of C. How many errors does C correct?

- 2. Decode the words $w_1 = 110110$ and $w_2 = 011011$, using coset decoding.
- 3. Construct a syndrome look-up table and use it to decode the words $w_3 = 100100$ and $w_4 = 011101$.

Answer. We note that the parity-check matrix H is in standard form, so we can easily construct the following generator matrix in standard form:

From the parity-check matrix, it is clear that C is a binary [6, 3, 3]-code.

We shall now decode w_1 and w_2 using coset decoding. So, we list the cosets of C as follows, where the corresponding coset leaders are underlined:

$$\begin{split} C + 000000 &= \{ \underline{000000}, 100110, 010101, 001011, 110011, 101101, 011110, 1111001 \}, \\ C + 000001 &= \{ \underline{000001}, 100111, 010100, 001010, 110010, 101100, 011111, 111001 \}, \\ C + 000010 &= \{ \underline{000010}, 100100, 010111, 001001, 101001, 101111, 011100, 111100 \}, \\ C + 000100 &= \{ \underline{000100}, 100010, 010001, 001111, 110111, 101001, 011010, 111100 \}, \\ C + 001000 &= \{ \underline{001000}, 101110, 011101, 000011, 111101, 10011, 010110, 101000 \}, \\ C + 010000 &= \{ \underline{010000}, 110110, 000101, 011011, 100011, 111101, 001110, 101000 \}, \\ C + 100000 &= \{ \underline{100000}, 000110, 110101, 101011, 001011, 001101, 111110, 011000 \}, \\ C + 100001 &= \{ \underline{100001}, 000111, 110100, 101010, 011001, 001100, 111110, 011000 \}. \end{split}$$

Observe that both w_1 and w_2 belong in the same coset that has the unique leader e = 010000, so we decode to $c_1 = 100110$ and $c_2 = 001011$ respectively.

Using the above list, we can construct the following syndrome look-up table¹:

Coset leader	Syndrome
000000	000
000001	001
000010	010
000100	100
001000	011
010000	101
100000	110
100001	111

The last entry of the above is in **bold** to indicate that fact that the corresponding coset has multiple leaders. Next, we compute

$$S(w_3) = w_3 \cdot H^T = 010$$
 and $S(w_4) = w_4 \cdot H^T = 011$.

From the syndrome look-up table, we get that the corresponding errors are $e_1 = 000010$ and $e_2 = 0010000$, so we decode to $c_1 = 100110$ and $c_2 = 010101$ respectively.

¹Note that the construction of the syndrome look-up table can also be done without the above list, as mentioned in the lectures.

Exercise 5. Prove that $A_2(5,4) = B_2(5,4) = 2$.

Answer. First, we observe that the binary code $C'=\langle 11110\rangle$ is a linear binary (5,2,4)-code. It follows that

$$2 \le B_2(5,4).$$
 (1)

Now, let C be a binary code of length 5, such that d(C) = 4. Assume that $c = (c_1, c_2, c_3, c_4, c_5) \in C$. Since d(C) = 4, another codeword of C has to be one of $(c'_1, c'_2, c'_3, c'_4, c_5), (c'_1, c'_2, c'_3, c_4, c'_5), (c'_1, c'_2, c_3, c'_4, c'_5), (c'_1, c_2, c'_3, c'_4, c'_5), (c_1, c'_2, c'_3, c'_4, c'_5), (c'_1, c'_2, c'_3, c'_4$

$$A_2(5,4) \le 2.$$
 (2)

Equations (1) and (2), combined with the fact that $B_2(5,4) \leq A_2(5,4)$, yield the desired result.