Enumerating permutation polynomials

Theodoulos Garefalakis ${ }^{\text {a, }}$, Giorgos Kapetanakis ${ }^{\text {a,2,* }}$
${ }^{a}$ Department of Mathematics and Applied Mathematics, University of Crete, 70013 Heraklion, Greece

Abstract

We consider the problem of enumerating polynomials over \mathbb{F}_{q}, that have certain coefficients prescribed to given values and permute certain substructures of \mathbb{F}_{q}. In particular, we are interested in the group of N-th roots of unity and in the submodules of \mathbb{F}_{q}. We employ the techniques of Konyagin and Pappalardi to obtain results that are similar to their results in [Finite Fields and their Applications, 12(1):26-37, 2006]. As a consequence, we prove conditions that ensure the existence of low-degree permutation polynomials of the mentioned substructures of \mathbb{F}_{q}.

Keywords: finite fields, permutation polynomials
2010 MSC: 11T06, 11T23

1. Introduction

Let $q=p^{t}$, where p is a prime and t is a positive integer. A polynomial over the finite field \mathbb{F}_{q} is called a permutation polynomial if it induces a permutation on \mathbb{F}_{q}. The study of permutation polynomials goes back to the work of Hermite [6], Dickson [5], and subsequently Carlitz [3] and others. Recently, interest in permutation polynomials has been renewed due to applications they have found in coding theory, cryptography and combinatorics. We refer to Chapter 7 of [10] for background on permutation polynomials, as well as an extensive discussion on the history of the subject.

In a recent work, Coulter, Henderson and Matthews [4] present a new construction of permutation polynomials. Their method requires a polynomial that permutes the group of N-th roots of unity, μ_{N}, where $N \mid q-1$, and an auxiliary function T which contracts \mathbb{F}_{q} to $\mu_{N} \cup\{0\}$ and has some additional linearity property. This idea was generalized by Akbary, Ghioca and Wang [2].

[^0]In different line of work, Konyagin and Pappalardi $[7,8]$ count the permutation polynomials that have given coefficients equal to zero. Given a permutation $\sigma \in S\left(\mathbb{F}_{q}\right)$, there exists a unique polynomial in $f_{\sigma} \in \mathbb{F}_{q}[X]$ of degree at most $q-2$ such that $f_{\sigma}(c)=\sigma(c)$ for all $c \in \mathbb{F}_{q}$. For any $0<k_{1}<\cdots<k_{d}<q-1$, they define $N_{q}\left(k_{1}, \ldots, k_{d}\right)$ to be the number of permutations σ such that the corresponding polynomial f_{σ} has the coefficients of $X^{k_{i}}, 1 \leq i \leq d$, equal to zero and prove the following main result.

Theorem 1.1 ([8], Theorem 1).

$$
\left|N_{q}\left(k_{1}, \ldots, k_{d}\right)-\frac{q!}{q^{d}}\right| \leq\left(1+\frac{1}{\sqrt{e}}\right)^{q}\left(\left(q-k_{1}-1\right) q\right)^{q / 2} .
$$

In particular, this implies that there exist such permutations, given that $q!/ q^{d}>\left(1+e^{-1 / 2}\right)^{q}\left(\left(q-k_{1}-1\right) q\right)^{q / 2}$.

Akbary, Ghioca and Wang [1] sharpened this result by enumerating permutation polynomials of prescribed shape, that is, with a given set of non-zero monomials.

In the present work, we consider the problem of enumerating polynomials over \mathbb{F}_{q}, that have certain coefficients fixed to given values, and permute certain substructures of \mathbb{F}_{q}, namely the group of N-th roots of unity and submodules of \mathbb{F}_{q} and prove the following theorems.

Theorem 1.2. If $N!/ \mathfrak{q}^{d} \geq\left[(\mathfrak{q}-1)\left(N-k_{1}\right)\right]^{N / 2}\left(1+e^{-1 / 2}\right)^{N}$, then there exists a polynomial of $\mathbb{F}_{q}[X]$ of degree at most $N-1$, that permutes μ_{N}, the N-th roots of unity, with the coefficients of $X^{k_{i}}$ equal to $a_{i} \in \mathbb{F}_{q}$, for $i=1, \ldots, d$ and $0<k_{1}<\cdots<k_{d}<N$, where $N \mid q-1$ and \mathfrak{q} is the minimum divisor of q with $N \mid \mathfrak{q}-1$.

Theorem 1.3. Let \mathbb{F}_{r} be a proper subfield of \mathbb{F}_{q}. Suppose $\mathfrak{r}!/ \mathfrak{q}^{d} \geq \mathfrak{q}^{\mathfrak{r} / 2}(\mathfrak{r}-$ $\left.k_{1}-1\right)^{\mathfrak{r} / 2}\left(1+e^{-1 / 2}\right)^{\mathfrak{r}}$, then there exists a polynomial of $\mathbb{F}_{q}[X]$ that permutes \mathcal{F}, an $\mathbb{F}_{r}[X]$-submodule of \mathbb{F}_{q}, with its coefficients of $X^{k_{i}}$ equal to $a_{i} \in \mathbb{F}_{q}$, for $i=1, \ldots, d$ and $0<k_{1}<\cdots<k_{d}<N$, where $\mathfrak{r}=r^{n}=|\mathcal{F}|, \mathfrak{q}=r^{\rho}$ and ρ is the order and n is the degree of the Order of \mathcal{F}.

We employ the techniques of Konyagin and Pappalardi to obtain results that are similar to those in [8]. In particular, Theorems 1.2 and 1.3 can be viewed as the analoges of Theorem 1.1 for roots of unity and submodules respectively, while they also imply the existence of low-degree polynomials that permute these substructures of \mathbb{F}_{q}, see Corollaries 2.1 and 3.1.

2. Enumeration of polynomials that permute roots of unity

Let $N \mid q-1$ and $\sigma \in S\left(\mu_{N}\right)$ be a permutation of μ_{N}. We define the polynomial

$$
\begin{equation*}
f_{\sigma}(X)=\frac{1}{N} \sum_{c \in \mu_{N}} \sigma(c) g_{c}(X) \tag{1}
\end{equation*}
$$

where $g_{c}(X)=\sum_{j=0}^{N-1} c^{-j} X^{j}$, for $c \in \mu_{N}$. It is clear that $g_{c}(c)=N$ and $g_{c}(x)=0$ for all $x \in \mu_{N} \backslash\{c\}$, hence $f_{\sigma}(\omega)=\sigma(\omega)$, for every $\omega \in \mu_{N}$.

Given d integers $0<k_{1}<\cdots<k_{d}<N$, we denote

$$
N_{q}(\mathbf{k}, \mathbf{a})=\mid\left\{\sigma \in S\left(\mu_{N}\right) \mid \text { the coefficient of } X^{k_{i}} \text { of } f_{\sigma} \text { is } a_{i}, \forall 1 \leq i \leq d\right\} \mid
$$

where $\mathbf{k}=\left(k_{1}, \ldots, k_{d}\right)$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{F}_{q}^{d}$. From (1), we see that the j-th coefficient of f_{σ} is equal to some $a \in \mathbb{F}_{q}$ if and only if

$$
\sum_{c \in \mu_{N}} c^{-j} \sigma(c)=N a
$$

so we have

$$
N_{q}(\mathbf{k}, \mathbf{a})=\left|\left\{\sigma \in S\left(\mu_{N}\right) \mid \sum_{c \in \mu_{N}} c^{-k_{i}} \sigma(c)=N a_{i}, \forall 1 \leq i \leq d\right\}\right|
$$

For any $S \subseteq \mu_{N}$, define the sets

$$
\begin{aligned}
& A_{S}=\left\{f: \mu_{N} \rightarrow S \mid \sum_{c \in \mu_{N}} c^{-k_{i}} f(c)=N a_{i}, \forall 1 \leq i \leq d\right\} \\
& B_{S}=\left\{f: \mu_{N} \rightarrow S \mid f \text { is surjective, } \sum_{c \in \mu_{N}} c^{-k_{i}} f(c)=N a_{i}, \forall 1 \leq i \leq d\right\}
\end{aligned}
$$

Also, define $A(S)=\left|A_{S}\right|$ and $B(S)=\left|B_{S}\right|$. It is not hard to see that since $A(M)=\sum_{T \subseteq M} B(T)$, for every $M \subseteq \mu_{N}$, we have that

$$
\begin{equation*}
B(M)=\sum_{T \subseteq M}(-1)^{|M|-|T|} A(T) \tag{2}
\end{equation*}
$$

For $M=\mu_{N}$, the above implies

$$
\begin{equation*}
N_{q}(\mathbf{k}, \mathbf{a})=\sum_{S \subseteq \mu_{N}}(-1)^{N-|S|} A(S) \tag{3}
\end{equation*}
$$

Recall that $q=p^{t}$. Set $e_{p}(u):=e^{2 \pi i u / p}$ and $\operatorname{Tr}(x)$ the absolute trace of $x \in \mathbb{F}_{q}$, i.e. $\operatorname{Tr}(x):=x+x^{p}+\cdots+x^{p^{t-1}}$ for $x \in \mathbb{F}_{q}$. Further, let \mathfrak{q} be the smallest power of p such that $N \mid \mathfrak{q}-1$, i.e. $\mathbb{F}_{\mathfrak{q}}$ is the smallest subfield of \mathbb{F}_{q} containing μ_{N}. If
$S \subseteq \mu_{N}$, then

$$
\begin{align*}
A(S) & =\frac{1}{\mathfrak{q}^{d}} \sum_{\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{F}_{q}^{d}} \sum_{f: \mu_{N} \rightarrow S} e_{p}\left(\operatorname{Tr}\left(\sum_{i=1}^{d} \alpha_{i}\left(-N a_{i}+\sum_{c \in \mu_{N}} c^{-k_{i}} f(c)\right)\right)\right) \\
& =\frac{1}{\mathfrak{q}^{d}} \sum_{\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{F}_{q}^{d}} \sum_{f: \mu_{N} \rightarrow S} \frac{e_{p}\left(\sum_{c \in \mu_{N}} \operatorname{Tr}\left(f(c) \sum_{i=1}^{d} \alpha_{i} c^{-k_{i}}\right)\right)}{e_{p}\left(\operatorname{Tr}\left(N \sum_{i=1}^{d} \alpha_{i} a_{i}\right)\right)} \\
& =\frac{1}{\mathfrak{q}^{d}} \sum_{\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{F}_{q}^{d}} \frac{\prod_{c \in \mu_{N}} \sum_{t \in S} e_{p}\left(\operatorname{Tr}\left(t \sum_{i=1}^{d} \alpha_{i} c^{-k_{i}}\right)\right)}{e_{p}\left(\operatorname{Tr}\left(N \sum_{i=1}^{d} \alpha_{i} a_{i}\right)\right)} \\
& =\frac{|S|^{N}}{\mathfrak{q}^{d}}+R_{S}, \tag{4}
\end{align*}
$$

where

$$
\begin{aligned}
\left|R_{S}\right| & \leq \frac{\mathfrak{q}^{d}-1}{\mathfrak{q}^{d}} \max _{\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{F}_{\mathfrak{q}}^{d} \backslash\{0\}} \frac{\prod_{c \in \mu_{N}}\left|\sum_{t \in S} e_{p}\left(\operatorname{Tr}\left(t \sum_{i=1}^{d} \alpha_{i} c^{-k_{i}}\right)\right)\right|}{\left|e_{p}\left(\operatorname{Tr}\left(N \sum_{i=1}^{d} \alpha_{i} a_{i}\right)\right)\right|} \\
& =\frac{\mathfrak{q}^{d}-1}{\mathfrak{q}^{d}} \max _{\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{P}_{q}^{d} \backslash\{0\}} \prod_{c \in \mu_{N}}\left|\sum_{t \in S} e_{p}\left(\operatorname{Tr}\left(t \sum_{i=1}^{d} \alpha_{i} c^{-k_{i}}\right)\right)\right| .
\end{aligned}
$$

Moreover, the AM-GM inequality implies

$$
\begin{aligned}
\prod_{c \in \mu_{N}} \mid \sum_{t \in S} e_{p}\left(\operatorname{Tr}\left(t \sum_{i=1}^{d} \alpha_{i} c^{-k_{i}}\right)\right. &) \mid
\end{aligned} \left\lvert\, \leq\left(\frac{1}{N} \sum_{c \in \mu_{N}}\left|\sum_{t \in S} e_{p}\left(\operatorname{Tr}\left(t \sum_{i=1}^{d} \alpha_{i} c^{-k_{i}}\right)\right)^{2}\right|^{\frac{N}{2}} .\right.\right.
$$

With the help of the well-known identity, see [9, Chapter 3],

$$
\begin{equation*}
\sum_{u \in \mathbb{F}_{\mathfrak{q}}}\left|\sum_{t \in S} e_{p}(\operatorname{Tr}(t u))\right|^{2}=\mathfrak{q}|S|, \tag{5}
\end{equation*}
$$

we eventually get that

$$
\prod_{c \in \mu_{N}}\left|\sum_{t \in S} e_{p}\left(\operatorname{Tr}\left(t \sum_{i=1}^{d} \alpha_{i} c^{-k_{i}}\right)\right)\right| \leq\left(\frac{(\mathfrak{q}-1)\left(N-k_{1}\right)|S|}{N}\right)^{N / 2},
$$

which implies

$$
\begin{equation*}
\left|R_{S}\right| \leq \frac{\mathfrak{q}^{d}-1}{\mathfrak{q}^{d}}\left(\frac{(\mathfrak{q}-1)\left(N-k_{1}\right)|S|}{N}\right)^{N / 2}<\left(\frac{(\mathfrak{q}-1)\left(N-k_{1}\right)|S|}{N}\right)^{N / 2} \tag{6}
\end{equation*}
$$

By working similarly as in Eq. (2), but by considering the mappings $\mu_{N} \rightarrow \mu_{N}$, we conclude that

$$
\sum_{S \subseteq \mu_{N}}(-1)^{N-|S|}|S|^{N}=N!,
$$

that combined with Equations (3), (4) and (6) and the fact that $j \leq N e^{j / N-1}$, since $1+x \leq e^{x}$ for all x, we get

$$
\begin{aligned}
\left|N_{q}(\mathbf{k}, \mathbf{a})-\frac{N!}{\mathfrak{q}^{d}}\right| & <\left(\frac{(\mathfrak{q}-1)\left(N-k_{1}\right)}{N}\right)^{N / 2} \sum_{j=0}^{N}\binom{N}{j} j^{N / 2} \\
& \leq\left(\frac{(\mathfrak{q}-1)\left(N-k_{1}\right)}{N}\right)^{N / 2} \sum_{j=0}^{N}\binom{N}{j}\left(N e^{j / N-1}\right)^{N / 2} \\
& =\left[(\mathfrak{q}-1)\left(N-k_{1}\right)\right]^{N / 2} \sum_{j=0}^{N}\binom{N}{j}\left(e^{-1 / 2}\right)^{N-j} \\
& =\left[(\mathfrak{q}-1)\left(N-k_{1}\right)\right]^{N / 2}\left(1+e^{-1 / 2}\right)^{N}
\end{aligned}
$$

Summing up, we have proved that

$$
N_{q}(\mathbf{k}, \mathbf{a})>\frac{N!}{\mathfrak{q}^{d}}-\left[(\mathfrak{q}-1)\left(N-k_{1}\right)\right]^{N / 2}\left(1+e^{-1 / 2}\right)^{N},
$$

which implies the Theorem 1.2.
If we apply this result in the case $k_{b}=N-1, k_{b-1}=N-1-1, \ldots, k_{1}=N-b$ and $a_{i}=0$ for all i, then we end up with the following interesting consequence.

Corollary 2.1. With the same assumptions as in Theorem 1.2, if

$$
\sqrt[N]{N!/ \mathfrak{q}^{b}} \geq \sqrt{b(\mathfrak{q}-1)}\left(1+e^{-1 / 2}\right)
$$

then there exists a polynomial of \mathbb{F}_{q} of degree less than $N-b$ that permutes μ_{N}.

3. Enumeration of polynomials that permute additive submodules

Throughout this section, we see \mathbb{F}_{q} as a $\mathbb{F}_{r}[X]$-module, where \mathbb{F}_{r} is a proper subfield of \mathbb{F}_{q}, under the action $f \circ x=\sum_{i=0}^{k} f_{i} x^{q^{i}}$ for $f=\sum_{i=0}^{k} f_{i} X^{i} \in \mathbb{F}_{r}[X]$ and $x \in \mathbb{F}_{q}$. Furthermore, it follows directly from the Normal Basis Theorem, see $\left[10\right.$, Theorem 2.35], that \mathbb{F}_{q} is a cyclic $\mathbb{F}_{r}[X]$-module.

Let \mathcal{F} be an $\mathbb{F}_{r}[X]$-submodule of \mathbb{F}_{q}, where $\mathfrak{r}:=|\mathcal{F}|=r^{n} \leq q$. Since $\mathbb{F}_{r}[X]$ is a principal ideal domain and \mathcal{F} is a $\mathbb{F}_{r}[X]$-submodule of \mathbb{F}_{q}, which is cyclic, it
follows that \mathcal{F} will be cyclic as well, see [11, Theorem 6.3]. As a consequence, there exists some monic $f \in \mathbb{F}_{r}[X]$, of degree n, with $f \mid X^{m}-1$, such that

$$
\mathcal{F}=\left\{x \in \mathbb{F}_{q} \mid f \circ x=0\right\}
$$

which is known as the Order of \mathcal{F}. Also, for every $x \in \mathcal{F}$ we have that

$$
\sum_{i=0}^{n} f_{i} x^{r^{i}-1}= \begin{cases}0, & \text { if } x \neq 0 \\ f_{0}, & \text { if } x=0\end{cases}
$$

while $f_{0} \neq 0$, since $f \mid X^{m}-1$. Now, for $\sigma \in S(\mathcal{F})$ a permutation of \mathcal{F}, we define

$$
\begin{equation*}
f_{\sigma}(X)=\frac{1}{f_{0}} \sum_{c \in \mathcal{F}} \sigma(c) \sum_{i=0}^{n} f_{i}(X-c)^{r^{i}-1} \tag{7}
\end{equation*}
$$

and it is clear that $f_{\sigma}(\omega)=\sigma(\omega)$ for every $\omega \in \mathcal{F}$.
Given d integers $0<k_{1}<\cdots<k_{d}<\mathfrak{r}$ and $\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{F}_{q}^{d}$, we denote

$$
N_{q}(\mathbf{k}, \mathbf{a})=\mid\left\{\sigma \in S(\mathcal{F}) \mid \text { the coefficient of } X^{k_{i}} \text { of } f_{\sigma} \text { is } a_{i}, \forall 1 \leq i \leq d\right\} \mid
$$

From (7), we deduce that the j-th coefficient of f_{σ} is a if and only if

$$
\sum_{c \in \mathcal{F}} \sum_{i=0}^{n}\binom{r^{i}-1}{j} f_{i}(-c)^{r^{i}-1-j} \sigma(c)=f_{0} a
$$

hence

$$
\begin{aligned}
& N_{q}(\mathbf{k}, \mathbf{a})= \\
& \quad\left|\left\{\sigma \in S(\mathcal{F}) \left\lvert\, \sum_{c \in \mathcal{F}} \sum_{i=0}^{n}\binom{r^{i}-1}{k_{j}} f_{i} c^{r^{i}-1-k_{j}} \sigma(c)=f_{0} a_{j}\right., \forall 1 \leq j \leq d\right\}\right| .
\end{aligned}
$$

For any $S \subseteq \mathcal{F}$, define the sets

$$
\begin{aligned}
& A_{S}=\left\{g: \mathcal{F} \rightarrow S \mid \sum_{c \in \mathcal{F}} \sum_{i=0}^{n} F_{i j} c^{r^{i}-1-k_{j}} g(c)=f_{0} a_{j}, \forall 1 \leq j \leq d\right\} \\
& B_{S}=\left\{g \in A_{S} \mid g \text { is surjective }\right\}
\end{aligned}
$$

where $F_{i j}$ stands for $\binom{r^{i}-1}{k_{j}} f_{i}$. Define $A(S)=\left|A_{S}\right|$ and $B(S)=\left|B_{S}\right|$. As with Eq. (2), we can show that $A(M)=\sum_{T \subseteq M} B(T)$, for every $M \subseteq \mathcal{F}$, hence

$$
\begin{equation*}
N_{q}(\mathbf{k}, \mathbf{a})=\sum_{S \subseteq \mathcal{F}}(-1)^{\mathfrak{r}-|S|} A(S) \tag{8}
\end{equation*}
$$

Furthermore, let ρ be the order of f, i.e. ρ is minimal such that $f \mid X^{\rho}-1$ and let $\mathfrak{q}:=r^{\rho}$. It follows that $\mathbb{F}_{\mathfrak{q}}$ is the smallest subfield of \mathbb{F}_{q} containing \mathcal{F}. For
$S \subseteq \mathcal{F}$, as in the case of Equation (4), we have

$$
\begin{align*}
A(S) & =\frac{1}{\mathfrak{q}^{d}} \sum_{\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{F}_{\boldsymbol{q}}^{d}} \sum_{g: \mathcal{F} \rightarrow S} \frac{e_{p}\left(\sum_{c \in \mathcal{F}} \operatorname{Tr}\left(g(c) \sum_{j=1}^{d} \alpha_{j} \sum_{i=0}^{n} F_{i j} c^{r^{i}-1-k_{j}}\right)\right)}{e_{p}\left(\operatorname{Tr}\left(\sum_{j=1}^{d} f_{0} \alpha_{j} a_{j}\right)\right)} \\
& =\frac{1}{\mathfrak{q}^{d}} \sum_{\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{P}_{q}^{d}} \frac{\prod_{c \in \mathcal{F}} \sum_{t \in S} e_{p}\left(\operatorname{Tr}\left(t \sum_{j=1}^{d} \sum_{i=0}^{n} \alpha_{j} F_{i j} c^{r^{i}-1-k_{j}}\right)\right)}{e_{p}\left(\operatorname{Tr}\left(\sum_{j=1}^{d} f_{0} \alpha_{j} a_{j}\right)\right)} \\
& =\frac{|S|^{\mathbf{r}}}{\mathfrak{q}^{d}}+R_{S}, \tag{9}
\end{align*}
$$

where

$$
\begin{aligned}
\left|R_{S}\right| & \leq \frac{\mathfrak{q}^{d}-1}{\mathfrak{q}^{d}} \max _{\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{F}_{\mathfrak{q}}^{d} \backslash\{0\}} \frac{\prod_{c \in \mathcal{F}}\left|\sum_{t \in S} e_{p}\left(\operatorname{Tr}\left(t \sum_{j=1}^{d} \sum_{i=0}^{n} \alpha_{j} F_{i j} c^{r^{i}-1-k_{j}}\right)\right)\right|}{\left|e_{p}\left(\operatorname{Tr}\left(\sum_{j=1}^{d} f_{0} \alpha_{j} a_{j}\right)\right)\right|} \\
& =\frac{\mathfrak{q}^{d}-1}{\mathfrak{q}^{d}} \max _{\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{F}_{\mathfrak{q}}^{d} \backslash\{0\}} \prod_{c \in \mathcal{F}}\left|\sum_{t \in S} e_{p}\left(\operatorname{Tr}\left(t \sum_{j=1}^{d} \sum_{i=0}^{n} \alpha_{j} F_{i j} c^{r^{i}-1-k_{j}}\right)\right)\right| .
\end{aligned}
$$

Also, the AM-GM inequality yields

$$
\begin{aligned}
& \prod_{c \in \mathcal{F}}\left|\sum_{t \in S} e_{p}\left(\operatorname{Tr}\left(t \sum_{j=1}^{d} \sum_{i=0}^{n} \alpha_{j} F_{i j} c^{r^{i}-1-k_{j}}\right)\right)\right| \\
& \leq\left(\frac{1}{\mathfrak{r}} \sum_{c \in \mathcal{F}}\left|\sum_{t \in S} e_{p}\left(\operatorname{Tr}\left(t \sum_{j=1}^{d} \sum_{i=0}^{n} \alpha_{j} F_{i j} c^{r^{i}-1-k_{j}}\right)\right)\right|^{2}\right)^{\mathfrak{r} / 2} \\
& \leq\left(\frac{1}{\mathfrak{r}} \sum_{c \in \mathbb{F}_{\mathfrak{q}}}\left|\sum_{t \in S} e_{p}\left(\operatorname{Tr}\left(t \sum_{j=1}^{d} \sum_{i=0}^{n} \alpha_{j} F_{i j} c^{r^{i}-1-k_{j}}\right)\right)\right|^{2}\right)^{\mathfrak{r} / 2} \\
& \leq\left(\frac{1}{\mathfrak{r}} \sum_{u \in \mathbb{F}_{\mathfrak{q}}}\left(\mathfrak{r}-1-k_{1}\right)\left|\sum_{t \in S} e_{p}(\operatorname{Tr}(t u))\right|^{2}\right)^{\mathfrak{r} / 2} .
\end{aligned}
$$

With the help of (5), we show that

$$
\prod_{c \in \mathcal{F}}\left|\sum_{t \in S} e_{p}\left(\operatorname{Tr}\left(t \sum_{j=1}^{d} \sum_{i=0}^{n} \alpha_{j} F_{i j} c^{r^{i}-1-k_{j}}\right)\right)\right| \leq\left(\mathfrak{q}\left(1-\frac{k_{1}+1}{\mathfrak{r}}\right)|S|\right)^{\mathfrak{r} / 2},
$$

that, in turn, yields

$$
\begin{equation*}
\left|R_{S}\right| \leq \frac{\mathfrak{q}^{d}-1}{\mathfrak{q}^{d}}\left(\mathfrak{q}\left(1-\frac{k_{1}+1}{\mathfrak{r}}\right)|S|\right)^{\mathfrak{r} / 2}<\left(\mathfrak{q}\left(1-\frac{k_{1}+1}{\mathfrak{r}}\right)|S|\right)^{\mathfrak{r} / 2} . \tag{10}
\end{equation*}
$$

Now, as in the case of the roots of unity, it is clear that

$$
\sum_{S \subseteq \mathcal{F}}(-1)^{\mathfrak{r}-|S|}|S|^{\mathfrak{r}}=\mathfrak{r}!
$$

which combined with Equations (8), (9) and (10) and the fact that $j \leq \mathfrak{r} e^{j / \mathfrak{r}-1}$, gives

$$
\begin{aligned}
\left|N_{q}(\mathbf{k}, \mathbf{a})-\frac{\mathfrak{r}!}{\mathfrak{q}^{d}}\right| & <\mathfrak{q}^{\mathfrak{r} / 2}\left(1-\frac{k_{1}+1}{\mathfrak{r}}\right)^{\mathfrak{r} / 2} \sum_{j=0}^{\mathfrak{r}}\binom{\mathfrak{r}}{j} j^{\mathfrak{r} / 2} \\
& \leq \mathfrak{q}^{\mathfrak{r} / 2}\left(1-\frac{k_{1}+1}{\mathfrak{r}}\right)^{\mathfrak{r} / 2} \sum_{j=0}^{\mathfrak{r}}\binom{\mathfrak{r}}{j}\left(\mathfrak{r} e^{j / \mathfrak{r}-1}\right)^{\mathfrak{r} / 2} \\
& =\mathfrak{q}^{\mathfrak{r} / 2}\left(\mathfrak{r}-k_{1}-1\right)^{\mathfrak{r} / 2}\left(1+e^{-1 / 2}\right)^{\mathfrak{r}} .
\end{aligned}
$$

To sum up, in this section we proved that

$$
N_{q}(\mathbf{k}, \mathbf{a})>\frac{\mathfrak{r}!}{\mathfrak{q}^{d}}-\mathfrak{q}^{\mathfrak{r} / 2}\left(\mathfrak{r}-k_{1}-1\right)^{\mathfrak{r} / 2}\left(1+e^{-1 / 2}\right)^{\mathfrak{r}}
$$

which implies Theorem 1.3.
By applying this for $k_{b}=\mathfrak{r}-1, k_{b-1}=\mathfrak{r}-1-1, \ldots, k_{1}=\mathfrak{r}-b$ and $a_{i}=0$ for all i, we end up with the following.

Corollary 3.1. With the same assumptions as in Theorem 1.3, if

$$
\sqrt[\mathfrak{r}]{\frac{\mathfrak{r}!}{\mathfrak{q}^{d}}} \geq \sqrt{\mathfrak{q}(b-1)}\left(1+e^{-1 / 2}\right)
$$

then there exists a polynomial of \mathbb{F}_{q} of degree less than $\mathfrak{r}-b$ that permutes \mathcal{F}.

Aknowledgments

The authors would like the reviewer for his/her suggestions and corrections.

References

[1] A. Akbary, D. Ghioca and Q. Wang. On permutation polynomials with prescribed shape. Finite Fields Appl., 15:195-206, 2009.
[2] A. Akbary, D. Ghioca and Q. Wang. On constructing permutations of finite fields. Finite Fields Appl., 17:51-67, 2011.
[3] L. Carlitz. Permutations in a finite field. Proc. Amer. Math. Soc., 4:538, 1953.
[4] R. Coulter, M. Henderson and R. Matthews. A note on constructing permutation polynomials. Finite Fields Appl., 15:553-557, 2009.
[5] L. Dickson. The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group. Ann. of Math., 11:65-120, 161-183, 1897.
[6] C. Hermite. Sur les fonctions de sept lettres. C.R. Acad. Sci. Paris, 57:750757, 1863.
[7] S. Konyagin and F. Pappalardi. Enumerating permutation polynomials over finite fields by degree. Finite Fields Appl., 8(4):548-553, 2002.
[8] S. Konyagin and F. Pappalardi. Enumerating permutation polynomials over finite fields by degree II. Finite Fields Appl., 12(1):26-37, 2006.
[9] S. Konyagin and I. Shparlinski. Character Sums with Exponential Functions and their Applications. Cambridge University Press, Cambridge, 2004.
[10] R. Lidl and H. Niederreiter. Finite Fields. Addison-Wesley, Reading, Mass., 1983.
[11] S. Roman. Advanced Linear Algebra. Springer-Verlag, New York, 2008.

[^0]: * Corresponding author

 Email addresses: tgaref@uoc.gr (Theodoulos Garefalakis), gnkapet@gmail.com (Giorgos Kapetanakis)
 ${ }^{1}$ Tel.: +302810393845 , Fax: +302810393881
 ${ }^{2}$ Tel.: +302810393724 , Fax: +302810393881

