
Normal bases and primitive elements over finite fields

Giorgos Kapetanakis1

Department of Mathematics, University of Crete, Voutes Campus, 70013, Heraklion, Greece

Abstract

Let q be a prime power, m ≥ 2 an integer and A =
(
a b
c d

)
∈ GL2(Fq), where

A 6= ( 1 1
0 1 ) if q = 2 and m is odd. We prove an extension of the primitive

normal basis theorem and its strong version. Namely, we show that, except for
an explicit small list of genuine exceptions, for every q, m and A, there exists
some primitive x ∈ Fqm such that both x and (ax+b)/(cx+d) produce a normal
basis of Fqm over Fq.

Keywords: Primitive element, Free element, Normal basis, Character sum,
Finite field
2010 MSC: 11T30, 11T06, 11T24, 12E20

1. Introduction

Let q be a power of some prime number p. We denote by Fq the finite
field of q elements and by Fqm its extension of degree m. A generator of the
multiplicative group F∗qm is called primitive and an element x ∈ Fqm is called

free, if the set {x, xq, xq2 , . . . , xqm−1} is an Fq-basis of Fqm . Such a basis is called
normal.

It is well-known that both primitive and free elements exist. The existence
of elements that are simultaneously primitive and free is also known:

Theorem 1.1 (Primitive normal basis theorem). Let q be a prime power
and m a positive integer. There exists some x ∈ Fqm that is simultaneously
primitive and free.

Lenstra and Schoof [14] were the first to provide a complete proof of the above,
completing partial proofs of Carlitz [1, 2] and Davenport [10]. Later, Cohen
and Huczynska [8] provided a computer-free proof, with the help of sieving
techniques, previously introduced by Cohen [5]. Also, several generalizations
of Theorem 1.1 have been investigated [7, 11, 19]. Recently, an even stronger
result was shown.

Email address: gkapet@math.uoc.gr (Giorgos Kapetanakis)
1Tel: (+30) 2810 393771, Fax: (+30) 2810 393881

Preprint submitted to Elsevier November 22, 2013



Theorem 1.2 (Strong primitive normal basis theorem). Let q be a pri-
me power and m a positive integer. There exists some x ∈ Fqm such that x and
x−1 are both simultaneously primitive and free, unless the pair (q,m) is one of
(2, 3), (2, 4), (3, 4), (4, 3) or (5, 4).

Tian and Qi [18] were the first to prove this result for m ≥ 32, but Cohen
and Huczynska [9] were those who extended it to its stated form, once again
with the help of their sieving techniques. The reader is referred to [6, 12] and
the references therein, for more complete surveys of this, very active, line of
research.

More recently, an extension of both theorems was considered [13]:

Theorem 1.3. Let q ≥ 23 be a prime power, m ≥ 17 an integer and A =(
a b
c d

)
∈ GL2(Fq), such that if A has exactly two non-zero entries and q is odd,

then the quotient of these entries is a square in Fqm . There exists some x ∈ Fqm
such that both x and (ax+ b)/(cx+ d) are simultaneously primitive and free.

Clearly, Theorems 1.1 and 1.2 are special cases of the above, for matrices of
the form ( a 0

0 a ) and ( 0 a
a 0 ), where a 6= 0, respectively. It s clear though, that

despite Theorem 1.3 being a natural extension of Theorems 1.1 and 1.2, the
large number of possible exceptions leaves room for improvement. It is worth
noting though, that, since the mentioned sieving techniques have been employed
in this work, one would not expect much improvement. On the other hand,
thanks to a notice of Stephen Cohen, if the condition of (ax + b)/(cx + d) to
be primitive was missing from Theorem 1.3, the resulting problem would still
be an extension of Theorems 1.1 and 1.2 (to make this clear, notice that the
two conditions of x and x−1 to be primitive in Theorem 1.2 overlap, i.e. the
latter actually has three genuine conditions) and also would be of comparable
complexity with Theorem 1.2, thus a pursue to a complete solution would be
more realistic.

In this paper, we omit the condition of (ax + b)/(cx + d) to be primitive
in Theorem 1.3 and completely solve the resulting problem. In particular, we
prove the following:

Theorem 1.4. Let q be a prime power, m ≥ 2 an integer and A =
(
a b
c d

)
∈

GL2(Fq), where A 6= ( 1 1
0 1 ) if q = 2 and m is odd. There exists some primitive

x ∈ Fqm , such that both x and (ax+ b)/(cx+ d) produce a normal basis of Fqm
over Fq, unless one of the following hold:

1. q = 2, m = 3 and A = ( 0 1
1 0 ) or A = ( 1 0

1 1 ),

2. q = 3, m = 4 and A is anti-diagonal or

3. (q,m) is (2, 4), (4, 3) or (5, 4) and d = 0.

Remark. It is interesting to notice that, not only we have no new exceptions
than those appearing in Theorem 1.2, but we have no exceptions at all if all of
the entries of A are non-zero. This is somehow surprising, if we consider the
vast number of different tranformations that the various A’s define. Also, note
that the (infinite) family A = ( 1 1

0 1 ), q = 2 and m odd consists solely of genuine
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exceptions. See the remark following Proposition 3.1 for a more detailed account
of this delicate case.

This work completes [13]. It is also influenced by the work of Lenstra and Schoof
[14], while a character sum estimate [3, 4, 16] plays a crucial role in our proof.
Moreover, much of this paper is inspired by and follows the work of Cohen and
Huczynska [8, 9], whose techniques have been adjusted.

2. Preliminaries

Let x ∈ Fqm and F =
∑n
i=0 fiX

i ∈ Fq[X]. We define F ◦ x :=
∑n
i=0 fix

qi .
Under the above action, Fqm is an Fq[X]-module, i.e. the annihilator of x has a
unique monic generator, called the Order of x and denoted by Ord(x). It is also
clear that, Ord(x) | Xm−1 and that the elements that are free are exactly those
of Order Xm − 1. Furthermore, if x is of Order G, there exists some y ∈ Fqm
such that H ◦ y = x, where H(X) := (Xm − 1)/G(X), while elements of Fqm
which can be written in that manner are exactly those whose Order divides
G. The above argument enables us to extend the definition of a free element.
Suppose G | Xm − 1. We call x ∈ Fqm G-free, if x = H ◦ y for some y ∈ Fqm
and H | G, implies H = 1.

Similarly, x ∈ F∗qm is primitive if ord(x) = qm − 1, where ord(x) stands
for the multiplicative order of x. This means that x is primitive if and only
if x = yd, for some y ∈ Fqm and d | qm − 1, implies d = 1. Let d | qm − 1,
we call x d-free, if w | d and x = yw implies w = 1. Furthermore, it follows
from the definitions that qm − 1 and Xm − 1 may be freely replaced by their
radicals q0 and F0 := Xm0 − 1 respectively, where m0 is such that m = m0p

b

and gcd(m0, p) = 1.
In the rest of this section we present a couple of functions that characterize

primitive and free elements. The concept of a character of a finite abelian group
is necessary.

Definition 2.1. Let G be a finite abelian group. A character of G is a group
homomorphism G → C∗. The characters of G form a group under multiplica-
tion, which is isomorphic to G and denoted by Ĝ. Furthermore, the character
χo, where χo(g) = 1 for all g ∈ G is the trivial character of G.

From now on, we will call the characters of F∗qm multiplicative characters and
the characters of Fqm additive characters. Furthermore, we will denote by χo
and ψo the trivial multiplicative and additive character respectively and we will
extend the multiplicative characters to zero with the rule

χ(0) :=

{
0, if χ ∈ F̂∗qm \ {χo},
1, if χ = χo.

Before we continue further, we indicate some more well-known facts about

additive and multiplicative characters. As mentioned before, F̂∗qm ∼= F∗qm , hence
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F̂∗qm is cyclic of order qm − 1, thus for every d | qm − 1,∑
χ∈F̂∗

qm
, ord(χ)=d

1 = φ(d), (1)

where φ stands for the Euler function. Furthermore, we denote by χg a generator

of F̂∗qm and it follows that any non-trivial multiplicative character can be written
as χng for some n ∈ {1, . . . , qm − 2}. Similarly, every additive character is of
the form ψ(x) = exp((2πiTr(yx))/p), where Tr stands for the trace function
of Fqm over Fp and y ∈ Fqm , and every function of that form is an additive
character. It is clear that ψo, the trivial character, corresponds to y = 0, while
we denote by ψg the character that corresponds to y = 1, also known as the
canonical character. For the above well-known facts the reader is referred to
classic textbooks [15, 17].

Let r | qm− 1. Following Cohen and Huczynska [8, 9], we define the charac-
teristic function of the r-free elements of Fqm as follows:

ωr : Fqm → C, x 7→ θ(r)
∑
d|r

µ(d)

φ(d)

∑
χ∈F̂∗

qm
,ord(χ)=d

χ(x),

where µ denotes the Möbius function and θ(r) := φ(r)/r =
∏
l|r,l prime(1− l−1)

In order to define the additive analogue of ωr, the analogues of θ, φ, µ and

the order a character have to be defined. First observe that, F̂qm is an Fq[X]-

module under the rule ψF (x) = ψ(F ◦x), for ψ ∈ F̂qm , F ∈ Fq[X] and x ∈ Fqm .

The Order of ψ ∈ F̂qm is the monic polynomial generating the annihilator of ψ in
Fq[X] and is denoted by Ord(ψ). Let F ∈ Fq[X] be a non-zero polynomial, then
φ(F ) := |(Fq[X]/FFq[X])∗|, the analogue of the Euler function. The analogue
of Eq. (1), shown in [14], states that for G ∈ Fq[X], with G | Xm − 1 we have
that ∑

ψ∈F̂qm , Ord(ψ)=G

1 = φ(G). (2)

The definition of the analogues θ and the Möbius function are straightforward,
namely for F ∈ Fq[X] define θ(F ) := φ(F )/qdeg(F ) and

µ(F ) :=

{
(−1)r, if F is divisible by r distinct monic irreducibles,

0, otherwise.

Now, we can define the analogue of ωr, namely for F | Xm − 1, we have

ΩF : Fqm → C, x 7→ θ(F )
∑

G|F,G monic

µ(G)

φ(G)

∑
ψ∈F̂qm ,Ord(ψ)=G

ψ(x).

It can be shown [8, 9] that ΩF is the characteristic function for the elements of
Fqm that are F -free.
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In the following sections we will encounter various character sums and a
valuation, or at least an estimation, of those sums will be necessary. The fol-
lowing results are well-known. A proof for the first result can be found in classic
textbooks [15, 17].

Lemma 2.2 (Orthogonality relations). Let χ be a non-trivial character of
a group G and g a non-trivial element of G. Then∑

x∈G

χ(x) = 0 and
∑
χ∈Ĝ

χ(g) = 0.

The following proposition plays a crucial role in our proof.

Proposition 2.3. Let χ be a non-trivial multiplicative character of order n and
ψ be a non-trivial additive character. Let F ,G be rational functions in Fqm(X)
such that F 6= yHn, for any y ∈ Fqm and H ∈ Fqm(X), and G 6= Hp −H + y,
for any y ∈ Fqm and H ∈ Fqm(X). Then∣∣∣∣∣∣

∑
x∈Fqm\S

χ(F(x))ψ(G(x))

∣∣∣∣∣∣ ≤ (deg(G)∞ + l + l′ − l′′ − 2)qm/2,

where S is the set of poles of F and G, (G)∞ is the pole divisor of G, l is the
number of distinct zeros and finite poles of F in F̄q, l′ is the number of distinct
poles of G (including ∞) and l′′ is the number of finite poles of F that are poles
or zeros of G.

A slightly weaker (lacking the term l′′) version of the above result was initially
proved by Perel’muter [16], but Castro and Moreno [3] improved the result to
its stated form. Recently, Cochrane and Pinner [4] presented a proof, which
uses the elementary Stepanov-Schmidt method.

3. Some estimates

Let A =
(
a b
c d

)
∈ GL2(Fq), q1 | q0 and Fi | F0, for i = 1, 2, where q0 and F0

stand for the radicals of qm − 1 and Xm − 1 respectively; in particular F0 =
Xm0−1. We denote (q1, F1, F2) by k and call it a divisor triple. Furthermore, we
call an element x ∈ Fqm kA-free, if x is q1-free and F1-free and (ax+ b)/(cx+d)
is F2-free. Also we denote by NA(k) the number of x ∈ Fqm that are kA-free.
We write l | k, if l = (d1, G1, G2) and d1 | q1 and Gi | Fi for i = 1, 2. Further,
w stands for (q0, F0, F0) and 1 stands for (1, 1, 1), while the greatest common
divisor and the least common multiple of a set of divisor triples are defined
point-wise. A divisor triple p is called prime if it has exactly one entry that
is 6= 1 and this entry is either a prime number or an irreducible polynomial.
Finally, if two divisor triples are co-prime, then their product can be defined
naturally.

For r ∈ N, set tr to be the number of prime divisors of r and tF the number of
monic irreducible divisors of F ∈ Fq[X] and set W (r) := 2tr and W (F ) := 2tF .
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It follows that
∑
d|r |µ(d)| = W (r) and

∑
G|F |µ(G)| = W (F ). Moreover, for

k = (q1, F1, F2) we will denote by f(k) the product f(q1)f(F1)f(F2), where f
may be θ, φ, µ or W . Clearly, our purpose is to show that NA(w) > 0. The
proposition below is our first step towards this.

Proposition 3.1. Let A =
(
a b
c d

)
∈ GL2(Fq) and k be a divisor triple. If

(q, c) 6= (2, 0) and qm/2 ≥ 3W (k), then NA(k) > 0.

Proof. From the fact that ω and Ω are characteristic functions, we have that:

NA(k) =
∑
x

ωq1(x)ΩF1
(x)ΩF2

((ax+ b)/(cx+ d)), (3)

where the sum runs over Fqm , except −d/c if c 6= 0.
First, assume c 6= 0. Eq. (3) gives

NA(k) = θ(k)
∑
l|k

l=(d1,G1,G2)

µ(l)

φ(l)

∑
ord(χ1)=d1,
Ord(ψ1)=G1,
Ord(ψ2)=G2

XA(χ1, ψ1, ψ2), (4)

where

XA(χ1, ψ1, ψ2) :=
∑

x 6=−d/c

χ1(x)ψ1(x)ψ2((ax+ b)/(cx+ d))

=
∑

x6=−d/c

χg(x
n1)ψg(G(x)),

for 0 ≤ n1 ≤ qm−2, G(X) := (y1X(cX+d) +y2(aX+ b)/(cX+d) ∈ Fq[X] and
yi ∈ Fqm . Our first aim is to show that |XA(χ1, ψ1, ψ2)| is bounded by 3qm/2,
unless all three characters are trivial. Proposition 2.3 implies that if n1 6= 0 and
G 6= Hp −H+ y, for any y ∈ Fqm and H ∈ Fqm(X), then

|XA(χ1, ψ1, ψ2)| ≤ 3qm/2.

If n1 = 0 and at least one of y1, y2 is non-zero, then it can be shown [13,
§4.1], that |XA(χ1, ψ1, ψ2)| ≤ 2qm/2. If G = Hp − H + y for some y ∈ Fqm
and H ∈ Fqm(X), it follows that, see [13, §4.1], y1 = y2 = 0 and in that case
|XA(χ1, ψ1, ψ2)| = 1 from Lemma 2.2, if n1 6= 0. We have now shown that
|XA(χ1, ψ1, ψ2)| ≤ 3qm/2, unless all three characters are trivial. This, combined
with Eq. (4), implies

NA(k) ≥ θ(k)

qm − 1− 3qm/2
∑

l|k, l6=1

µ(l)

φ(l)

∑
χ1,ψ1,ψ2

1

 ,

which combined with Eqs. (1) and (2), gives:

NA(k)

θ(k)
≥ qm/2

qm/2 − 1

qm/2
− 3

∑
l|k, l6=1

µ(l)


≥ qm/2(qm/2 − q−m/2 − 3(W (k)− 1))
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and the desired result follows.
Next, assume c = 0. As before, Eq. (3) gives

NA(k) = θ(k)
∑
l|k

l=(d1,G1,G2)

µ(l)

φ(l)

∑
ord(χ1)=d1,
Ord(ψ1)=G1,
Ord(ψ2)=G2

ψ2(b/d)YA(χ1, ψ1, ψ2), (5)

where YA(χ1, ψ1, ψ2) :=
∑
x∈Fqm

χ1(x)(ψ1ψ
′
2)(x), for ψ′2(x) := ψ2(ax/d) for all

x ∈ Fqm , an additive character of the same Order as ψ2. It follows directly
from Lemma 2.2 and Proposition 2.3, that if at least one of χ1 or (ψ1, ψ

′
2) is

non-trivial, then |YA(χ1, ψ1, ψ2)| ≤ qm/2. Now, Eq. (5) gives:∣∣∣∣∣∣NA(k)

θ(k)
− qm

∑
G|gcd(F1,F2)

µ(G)2

ψ(G)2

∑
Ord(ψ2)=G

ψ2

(
b

a

)∣∣∣∣∣∣ ≤ qm/2W (k).

The coefficient of qm in the above can be shown, see [13, §4.2], to be larger than
q(q − 2)/(q − 1)2. It follows that a sufficient condition for NA(k) > 0 would be

qm/2
q(q − 2)

(q − 1)2
> W (k),

which clearly implies the desired result for q 6= 2. �

Remark. If q = 2, then the left part of the last inequality of the above proof is
zero and the inequality is always false. This is a consequence of the fact that,
in this case, A can be ( 1 1

0 1 ), hence our demand is to exists some free x, such
that x+ 1 is also free, which is impossible for odd m. On the other hand for m
even, x is free if and only if x + 1 is free, i.e. the resulting problem is always
true from Theorem 1.1.

Remark. It is clear in the last lines of the proof of the above, that a weaker
condition for NA(w) > 0 could be achieved, if we restricted ourselves to the
case c = 0.

In the rest of this section, following Cohen and Huczynska [8, 9], we introduce
a sieve that will help us get improved results. The propositions below are those
of Cohen and Huczynska [9], adjusted properly.

Let k = (q1, F1, F2) be a divisor triple. A set of complementary divisor
triples of k, with common divisor k0 is a set {k1, . . . ,kr}, where the ki’s are
divisor triples, such that ki | k for every i, their least common multiplier is
divided by the radical of k and (ki,kj) = k0 for every i 6= j. Furthermore, if
k1, . . . ,kr are such that ki = k0pi, where p1, . . . ,pr are distinct prime divisor
triples, co-prime to k0, then this particular set of complementary divisors is
called a (k0, r)-decomposition of k. For a (k0, r)-decomposition of k we define
δ := 1 −

∑r
i=1 1/|pi|, where |pi| stands for the absolute value of the unique

entry 6= 1 of pi, if this entry is a number, and qdeg(F ), if this entry is F ∈ Fq[X].
Finally, we define ∆ := (r − 1)/δ + 2.
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Proposition 3.2 (Sieving inequality). Let A ∈ GL2(Fq), k be a divisor
triple and {k1, . . . ,kr} be a set of complementary divisors of k with common
divisor k0. Then

NA(k) ≥
r∑
i=1

NA(ki)− (r − 1)NA(k0).

Proof. The proof is identical to the proof of [13, Proposition 5.1], where the
word “quadruple” may be replaced by the word “triple”. �

Proposition 3.3. Let A =
(
a b
c d

)
∈ GL2(Fq), k be a divisor triple with a

(k0, r)-decomposition, such that δ > 0 and k0 = (q1, F1, F1). If (q, c) 6= (2, 0)
and qm/2 > 3W (k0)∆, then NA(k) > 0.

Proof. Let p1, . . . ,pr be the primes of the (k0, r)-decomposition. Proposi-
tion 3.2 implies

NA(k) ≥ δNA(k0) +

r∑
i=1

(
NA(k0pi)−

(
1− 1

|pi|

)
NA(k0)

)
. (6)

Suppose c 6= 0. Taking into account the analysis done in the corresponding part
of the proof of Proposition 3.1, Eq. (6) implies

NA(k)

θ(ko)
≥ δ

qm − 1 +
∑

l|k0, l6=1

U(l)

+

r∑
i=1

(
1− 1

|pi|

)∑
l|k0

U(lpi),

where the absolute values of the expressions U does not exceed 3qm/2. Since
δ > 0, we conclude that NA(k) > 0, if

δqm/2 ≥ 3W (k0)

(
δ +

r∑
i=1

(
1− 1

|pi|

))
,

and the result follows, since
∑r
i=1(1− 1/|pi|) = r − 1 + δ. Next, assume c = 0

and q 6= 2. Taking into account the analysis performed in the corresponding
part of the proof of Proposition 3.1, Eq. (6) imples

NA(k)

θ(ko)
≥ δ

κqm +
∑

l|k0, l 6=1

U(l)

+

r∑
i=1

(
1− 1

|pi|

)∑
l|k0

U(lpi),

where κ ≥ q(q−2)/(q−1)2 and the absolute values of the expressions U is smaller
than qm/2. As before, it follows that NA(k0) > 0, if qm/2 > κ−1W (k0)∆, which
clearly implies the desired result, since κ ≥ 3/4 for q ≥ 3. �

It is well-known, that F0 =
∏
d|m0

Qd, where Qd is the d-th cyclotomic poly-

nomial. The d-th cyclotomic polynomial splits into φ(d)/sd distinct monic irre-
ducible polynomials of degree sd, where sd is minimal such that d | qsd − 1. For
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a detailed account of the above, the reader is referred to [15, §2.4]. It follows
that F0 splits into φ(m0)/s monic irreducible polynomials of degree s := sm0

and some other polynomials of degree dividing s. We denote the product of
those with degree s by G0. The proposition below will prove to be useful.

Proposition 3.4. Let A =
(
a b
c d

)
∈ GL2(Fq), (q, c) 6= (2, 0), {l1, . . . lt} be a

set of distinct primes (this set may be ∅, in which case t = 0) dividing q0 and
r0 := deg(F0/G0). If

qm/2 >
3

2t
W (q0)W 2(F0/G0)

 qs(2(m0 − r0) + s(t− 1))

sqs
(

1−
∑t
i=1 1/li

)
− 2(m0 − r0)

+ 2

 ,

then NA(w) > 0, provided that the above denominator is positive.

Proof. Let G0 =
∏r1
i=1Gi be the factorization of G0 into monic irreducible

polynomials. Consider the (k0, 2r1 + t)-decomposition of w, where

k0 =

(
q0/

t∏
i=1

li, F0/G0, F0/G0

)
.

Clearly, the prime divisor triples of this decomposition are exactly those who
have exactly one 6= 1 entry and this entry is either li, for some i = 1, . . . t, or
Gi, for some i = 1, . . . , r1. Proposition 3.3 implies that NA(w) > 0, if

qm/2 >
3

2t
W (q0)W 2(F0/G0)

(
2r1 + t− 1

1−
∑t
i=1 1/li − 2

∑r1
i=1 1/qs

+ 2

)
,

that is

qm/2 >
3

2t
W (q0)W 2(F0/G0)

 qs(2sr1 + s(t− 1))

sqs
(

1−
∑t
i=1 1/li

)
− 2sr1

+ 2

 .

The desired result follows immediately, since sr1 = m0 − r0. �

Before continuing further, we focus on the delicate case m = 2. Although
Proposition 3.4 holds in that case as well, much weaker conditions forNA(w) > 0
can be achieved. Moreover, the fact that this case is absent in related previous
works [8, 9] makes this case more interesting. First of all we note that, granted
that x ∈ Fq2 is primitive, then x is free and (ax+ b)/(cx+ d) is (X + 1)-free. It
follows that NA(w) = NA(q0, X − 1), where

NA(q1, F1) :=
∑
x

ωq1(x)ΩF1((ax+ b)/(cx+ d)), (7)

where q1 | q0, F1 | X − 1 and the sum runs over Fq2 , except −d/c if c 6= 0. The
proposition below provides us with a sufficient condition for NA(q1, F1) > 0.
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Proposition 3.5. Suppose m = 2. Let A =
(
a b
c d

)
∈ GL2(Fq), q1 | q0 and

F1 | X − 1. If (q, c) 6= (2, 0) and q ≥W (q1)W (F1), then NA(q1, F1) > 0.

Proof. As in Proposition 3.1, first assume that c 6= 0. Eq. (7) implies

NA(q1, F1) = θ(q1)θ(F1)
∑
d1|q1
G1|F1

µ(d1)µ(F1)

φ(d1)φ(F1)

∑
ord(χ1)=d1
Ord(ψ1)=G1

ZA(χ1, ψ1),

where ZA(χ1, ψ1) :=
∑
x 6=−d/c χ1(x)ψ1((ax + b)/(cx + d)). As in the proof of

Proposition 3.1, we use Proposition 2.3 to show that |ZA(χ1, ψ1)| ≤ q, unless
both χ1 and ψ1 are trivial. It follows that

NA(q1, F1)

θ(q1)θ(F1)
≥ q2 − 1− q(W (q1)W (F1)− 1),

which implies the desired result. Next, assume c = 0. As before, Eq. (7) yields

NA(q1, F1) = θ(q1)θ(F1)
∑
d1|q1
G1|F1

µ(d1)µ(F1)

φ(d1)φ(F1)

∑
ord(χ1)=d1
Ord(ψ1)=G1

ψ1(b/d)WA(χ1, ψ1),

where WA(χ1, ψ1) :=
∑
x∈Fq2

χ1(x)ψ1(ax/d). Again, Lemma 2.2 and Proposi-

tion 2.3 imply |WA(χ1, ψ1)| ≤ q, unless both χ1 and ψ1 are trivial. t follows
that

NA(q1, F1)

θ(q1)θ(F1)
≥ q2 − q(W (q1)W (F1)− 1),

which implies the desired result. �

The above is enough to give us results, but, as in the general case, sieving can
be used to give us improved results. The proofs of the analogues of Proposi-
tions 3.2, 3.3 and 3.4 in this case are straightforward. We state the analogue of
Proposition 3.4.

Proposition 3.6. Suppose m = 2. Let A =
(
a b
c d

)
∈ GL2(Fq), (q, c) 6= (2, 0),

{l1, . . . lt} be a set of distinct primes (this set may be ∅, in which case t = 0)
dividing q0. If

q >
W (q0)

2t

(
t

1−
∑t
i=1 1/li − 1/q

+ 2

)
,

then NA(w) > 0, provided that the above denominator is positive.

In the proceeding section, an estimation for W (q0) will be necessary. The
lemma below provides us with one, while its proof is immediate using multi-
plicativity.

Lemma 3.7. For any r ∈ N, W (r) ≤ crr
1/4, where cr = 2s/(p1 · · · ps)1/4 and

p1, . . . , ps are the primes ≤ 16 that divide r, whilst for all r ∈ N, cr < 4.9.
Moreover, W (r) ≤ drr

1/8, where dr = 2t/(p1 · · · pt)1/8 and p1, . . . , pt are the
primes ≤ 28 that divide r, while for all r ∈ N, dr < 4514.7.
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Remark. The lemma above provides us a universal estimate for the numbers
cr and dr. Nonetheless, given r, these numbers are easily computable and in
some cases better estimates can be employed, for instance cr < 2.9 for odd r.
In the proceeding section cr is replaced by 4.9, a (smaller) estimate or by its
exact value.

4. Evaluations

Proposition 3.4 implies that some knowledge regarding the factorization of F0

can improve our results. In this section we, at least to some point, describe the
factorization of F0 and then use the theory presented earlier, in order to prove
our results. All non-trivial calculations described in the proofs of this section
were performed with MAPLE (v. 13). Moreover, in this section we assume that
A =

(
a b
c d

)
∈ GL2(Fq) and (q, c) 6= (2, 0). The lemma below (analogue to [9,

Lemma 2.5]) will prove to be useful.

Lemma 4.1. If m = 3 or 4 and q ≡ m− 1 (mod m), then

NA(w) = NA(q0, X
m−2 − 1, Xm−2 − 1).

Proof. Assume m = 4. It suffices to show that if some x ∈ Fq4 is (q0, X
2 −

1, X2−1)A-free, then x is wA-free. Let x be (q0, X
2−1, X2−1)A-free. Clearly,

X2 + 1 is irreducible over Fq and if x is not X4 − 1-free, then there exists some

y ∈ Fq4 , such that x = yq
2

+y, i.e. x = xq
2

, impossible since x 6∈ Fq2 . The same
argument applies to (ax+ b)/(cx+ d) and the result follows. The proof for the
case m = 3 is almost identical. �

Proposition 4.2. Suppose that (q,m) is such that m > 2 and m0 ≤ 4. More-
over, suppose that if m = 3 or m = 4, then q 6≡ 1 (mod m). Then NA(w) > 0
for all pairs (q,m) not listed in Table 1.

Proof. It follows from Proposition 3.1 and Lemma 3.7, that NA(w) > 0, if

qm/4 > 3cq04m0 . (8)

The above holds for q ≥ 17 and m ≥ 12, since cq0 < 4.9.
For q = 16, we have that cq0 < 2.9 and m0 ≤ 3, hence Eq. (8) is satisfied for

m ≥ 10. For q = 13, we have cq0 < 4.7 and Eq. (8) holds for m ≥ 13. If q = 11,
then cq0 < 4.5 and Eq. (8) is true for m ≥ 14. If q = 9, then cq0 < 3.2 and
Eq. (8) is satisfied for m ≥ 15. For q = 8, we have that cq0 < 2.9 and m0 ≤ 3,
i.e. Eq. (8) holds for m ≥ 13. If q = 7, then Eq. (8) is true for m ≥ 17, since
cq0 < 4. For q = 5, we see that Eq. (8) holds for m ≥ 20 and cq0 < 3.7. For
q = 4, we can assume that m0 ≤ 3 and cq0 < 2.9 and it follows that Eq. (8) is
satisfied for m ≥ 19. If q = 3, then cq0 < 2.9 and Eq. (8) holds for m ≥ 29.
Finally, of q = 2, then cq0 < 2.9 and m0 ≤ 3 and Eq. (8) holds for m ≥ 37.

For m = 11, we have m0 = 1 and cq0 < 4.5, i.e. Eq. (8) holds for q ≥ 5. If
m = 10, then m0 = 2 and cq0 < 3.7 and Eq. (8) holds for q ≥ 8. For m = 9,
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8, or 7, m0 = 1 and cq0 < 3.2, 2.9 and 4 respectively, thus Eq. (8) is true for
q ≥ 6, if m = 9 or 8, and for q ≥ 10, if m = 7. If m = 6, then m0 may be 2, in
which case cq0 < 3.2 and Eq. (8) holds for q ≥ 29, or 3, in which case cq0 < 2.9
and Eq. (8) holds for q ≥ 68. If m = 5, then m0 = 1, cq0 < 3.7 and Eq. (8) is
satisfied for q ≥ 21. If m = 4, then m0 may be 1, in which case cq0 < 2.9 and
Eq. (8) holds for q ≥ 35, or 4, in which case, accounting Lemma 4.1, we may
assume that m0 = 2 and cq0 < 4.9, i.e. Eq. (8) is satisfied for q ≥ 235. Finally,
if m = 3, thanks to Lemma 4.1 we can assume that m0 = 1 and cq0 < 3.2, hence
Eq. (8) holds for q ≥ 130.

Summing up, we end up with 83 remaining pairs (q,m). A computation
shows that all but 31 of them satisfy qm/2 > 3W (q0)4m0 , where W (q0) is
explicitly computed for each pair. Another sufficient condition, according to
Proposition 3.3, for our purposes, would be

qm/2 >
3W (q0)4m0

2t
·
(
t− 1

δ
+ 2

)
,

where {l1, . . . , lt} are distinct primes dividing q0 and δ := 1−
∑t
i=1 1/li should

be > 0. This is satisfied when (q,m) is (47, 4) and {13, 17, 23} is our set, (43, 4)
and {7, 11, 37}, (31, 4) and {5, 13, 37}, (29, 3) and {13, 67}, (27, 4) or (9, 6) and
{5, 7, 13, 73}, and, finally, (16, 6) or (4, 12) for {5, 7, 13, 17, 241}. The remaining
pairs are listed in Table 1. �

Proposition 4.3. If m0 = q−1 and m > 2, then NA(w) > 0 for all (q,m) not
listed in Table 1.

Proof. Here, F0 splits into q − 1 linear factors. We choose a (k0, r)-decompo-
sition of w, where k0 = (q0, G,G), for G | F0 with 1 ≤ deg(G) ≤ q − 1. In that
case all the 2(q − 1− deg(G)) primes of the decomposition have absolute value
q.

For q odd choose deg(G) = (q− 1)/2. In that case δ = 1/q, ∆ = (q− 1)2 + 1
and W (G) = 2(q−1)/2 and Proposition 3.3 implies that NA(w) > 0, if

qm/2 > 3 · 2q−1((q − 1)2 + 1)W (q0). (9)

For q even choose deg(G) = q/2. Now, δ = 2/q, ∆ = (q2−3q4)/2, W (G) = 2q/2

and Proposition 3.3 yields that if Eq. (9) holds, then NA(w) > 0, in that case
as well. With the help of Lemma 3.7, Eq. (9) may be replaced by

qm/4 > 3 · 4.9 · 2q−1((q − 1)2 + 1). (10)

First of all we can restrict ourselves to pairs (q,m) with q > 3, since those
cases have already been investigated in Proposition 4.2. Afterwards, we easily
check that Eq. (10) holds for q ≥ 43 and m ≥ m0. If m ≥ 2m0 then Eq. (10)
is satisfied for any q ≥ 14. If m ≥ 3m0, then Eq. (10) is satisfied for q ≥ 9. If
m ≥ 4m0, then Eq. (10) holds for q ≥ 7. For m ≥ 5m0, Eq. (10) is true for
q ≥ 6 and if m ≥ 8m0, then Eq. (10) holds for any q ≥ 4.
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Summing up, we end up with 22 pairs (q,m), not shown to satisfy Eq. (10)
yet, but 12 of them satisfy Eq. (9), if each appearing quantity is computed
explicitly. From the 10 remaining pairs, we can exclude (4, 6) and (4, 12), who
have already been investigated in Proposition 4.2. The remaining 8 pairs are
listed in Table 1. �

Proposition 4.4. If m0 | q − 1, m0 6= q − 1 and m > 2, then NA(w) > 0 for
all (q,m) not listed in Table 1.

Proof. In our case, G0 = F0 and s = 1 and it is clear that the denominator
of the inequality in Proposition 3.4 is positive, since m0 ≤ (q − 1)/2. It follows
that NA(w) > 0 if

qm/2 > 3W (q0)

(
q(2m0 − 1)

q − 2m0
+ 2

)
. (11)

Lemma 3.7 implies that another sufficient condition for our purposes would be

qm/4 > 3 · 4.9
(
q(2m0 − 1)

q − 2m0
+ 2

)
. (12)

The above equation is always true for m0 ≥ 12, provided that m0 ≤ m and
q ≥ 2m0 + 1. If m0 = m = 11, then Eq. (12) is satisfied for q ≥ 24, while
it is always true if m > m0 = 11. The same holds for m0 = 10, and q ≥ 23,
for m0 = 9 and q ≥ 24, for m0 = 8 and q ≥ 26, for m0 = 7 and q ≥ 31 and
for m0 = 6 and q ≥ 41. If m = m0 = 5, then Eq. (12) is true for q ≥ 66. If
m = 2m0 and m0 = 5, then Eq. (12) is true for q ≥ 13, while it is always true
for m ≥ 3m0 and m0 = 5. If m0 = m = 3 or 4, then Eq. (12) is satisfied when
q ≥ 139 or 488 respectively, while the cases when m0 = 3 or 4, but m > m0

have already been investigated in Proposition 4.2.
Summing up, we end up with a set of 89 pairs (q,m), not yet shown to satisfy

Eq. (12), but an exact computation reveals that only 20 of them fail to satisfy
Eq. (11). Moreover, the pair (121, 3) satisfies the demands of Proposition 3.4,
where {37} is the mentioned set. The same holds for (79, 3) and {43}, for (67, 3)
and {31}, for (61, 3) and {97}, for (49, 3) and {43}, for (43, 3) and {631}, for
(37, 3) and {67}, for (31, 3) and {331, 5}, for (29, 4) and {421} and, finally, for
(16, 5) and {41, 31}. The remaining 10 pairs (q,m) are listed in Table 1. �

Next, we focus on the case m0 > 4 and s 6= 1. Following Cohen and Huczyn-
ska [8, 9], we define ρ := tF0/G0

/m0, where tF0/G0
stands for the number of

monic irreducible factors of F0/G0. Furthermore, Proposition 3.4 implies that
NA(w) > 0, if

qm/2 > 3 · 4ρm0W (q0)

(
2qs(1− ρ)m0 − sqs

sqs − 2(1− ρ)m0
+ 2

)
, (13)

since tF0/G0
≤ r0 and ρm0 = tF0/G0

.The lemma below, proven in [8], provides
us an estimation of ρ, for q > 4.
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Lemma 4.5. Assume m0 > 4 and q > 4.

1. If m0 = 2 gcd(m, q − 1) with q odd, then s = 2 and ρ = 1/2.

2. If m0 = 4 gcd(m, q − 1) with q ≡ 1 (mod 4), then s = 4 and ρ = 3/8.

3. If m0 = 6 gcd(m, q − 1) with q ≡ 1 (mod 6), then s = 6 and ρ = 13/36.

4. Otherwise ρ ≤ 1/3.

Proposition 4.6. If m0 > 4, q > 4, s 6= 1 and ρ > 1/3, then NA(w) > 0,
unless (q,m) is listed in Table 1.

Proof. According to Lemma 4.5, ρ may be 1/2, 3/8 or 13/36. First, assume
ρ = 1/2. With the help of Lemma 4.5, Eq. (13) gives another condition for
NA(w) > 0, namely

qm/2 > 3 · 2m0W (q0)

(
q2(q − 2)

q2 − q + 1
+ 2

)
.

This inequality is satisfied for all q > 4 and m0 ≥ 8, if m > m0, where we
assume that W (q0) < 4.9qm/4, from Lemma 3.7. If m = m0, it is satisfied for
m ≥ 8 and q ≥ 1863 and for m ≥ 33 and q ≥ 38, where W (q0) < 4514.7qm/8.
Since m0 ≤ 2(q − 1), it follows that for our exception pairs (q,m), if any,
8 ≤ m ≤ 32 and 5 ≤ q ≤ 1861. In this region there are 310 pairs, such that
m = m0 = 2 gcd(m, q − 1). Among those pairs only 61 fail to satisfy

qm/2 > 3W (q0)2m
(

2m(q2 − 1) + 2q2

2q2 −m

)
,

another condition deriving from Lemma 4.5 and Eq. (13), for W (q0) ≤ 4.9qm/4.
From those pairs, all but four satisfy this inequality, if W (q0) is computed
explicitly. These pairs are (5, 8), (7, 12), (9, 16) and (13, 8), but (9, 16) sat-
isfies the resulting inequality, if we apply multiplicative sieving as well, with
{21523361, 193} as our set of sieving primes.

Next, assume ρ = 3/8. With the help of Lemmas 3.7 and 4.5, Eq. (13) gives
another condition for NA(w) > 0, namely

q3m/8 > 3 · 23m0/4 · 4514.7 ·
(
q5 + 3q4 − 10q + 10

4q4 − 5q + 5

)
.

This inequality is always true for m > m0. If m = m0, then this inequality
holds, for m ≥ 16 and q ≥ 28, m ≥ 32 and q ≥ 10 and for m ≥ 48 and q ≥ 8.
After taking into account the implied restrictions from Lemma 4.5, it follows
that the possible exception pairs are (9, 32) and (q, 16), with 5 ≤ q ≤ 25. In
this region, there are only three pairs satisfying m = m0 = 4 gcd(m, q − 1), but
only (5, 16) fails to satisfy

qm/2 > 3W (q0)23m/4
(
q4(5m− 16)

16q4 − 5m
+ 2

)
,

another condition deriving from Lemma 4.5 and Eq. (13).
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Finally, assume ρ = 13/36. With the help of Lemma 4.5, Eq. (13) gives
another condition for NA(w) > 0, namely

qm/2 > 3W (q0)213m0/18

(
23q6(q − 1)− 18q6

18q6 − 23(q − 1)
+ 2

)
.

This inequality is always true, if m > m0 and W (q0) < 4514.7qm/8. It is
also true for m = m0 ≥ 36 and q ≥ 10 and for m = m0 ≥ 72 and q ≥ 6,
for W (q0) < 4514.7qm/8. It follows from Lemmas 3.7 and 4.5, that the only
possible exception pair is (7, 36), which satisfies the above inequality, if W (q0)
is exactly computed. �

Proposition 4.7. If m0 > 4, q > 4, s 6= 1 and ρ ≤ 1/3, then NA(w) > 0,
unless (q,m) is listed in Table 1.

Proof. We begin with the case m0 ≥ 8. In that case, see [9, Lemma 6.5], the
function

f(ρ) := 4ρm0
2qs(1− ρ)m0 − sqs

sqs − 2(1− ρ)m0

is increasing (for ρ), when 0 ≤ ρ ≤ 1/3. It follows that it suffices to prove
Eq. (13) when ρ = 1/3. Moreover, since m0 ≤ qs, and s ≥ 2, it follows that

2qs(1− ρ)m0 − sqs

sqs − 2(1− ρ)m0
+ 2 ≤ 2m0 − 1,

that is Eq. (13) implies that if

qm/2 > 3W (q0)4m0/3(2m0 − 1), (14)

then NA(w) > 0. With the help of Lemma 3.7, we see that this inequality is
true for m ≥ 8, q ≥ 95 and W (q0) < 4.9qm/4, and m ≥ 106, q ≥ 5 and W (q0) <
4514.7qm/8. In the remaining region, there are exactly 2675 pairs (q,m), who
not fall in some case examined so far, but only 80 do not satisfy Eq. (14),
for W (q0) < 4.9qm/4 and just 5 who fail to satisfy Eq. (14), if we compute
W (q0) explicitly. A computation reveals that all 5 pairs satisfy Eq. (13), if all
mentioned quantities (i.e. ρ, s and W (q0)) are replaced by their exact values.

Next, we focus on the case 5 ≤ m0 ≤ 7. Since ρ ≤ 1/3 and s ≥ 2, it is
clear that W (F0) ≤ 22m0/3, hence Proposition 3.1 and Lemma 3.7, yield that
NA(w) > 0, if

qm/4 > 3 · 4.9 · 42m0/3.

This condition is satisfied when m ≥ 5 and q ≥ 347 and for all q ≥ 5 and m ≥ 5,
if m ≥ 4m0. It follows that there are exactly 184 pairs (q,m) in that region
fulfilling all restrictions. Among these pairs only (5, 6), (7, 4) and (11, 6), fail
to satisfy Eq. (13), with all appearing quantities computed explicitly. Finally,
it turns out that we can exclude (11, 6) from our list, since we can successfully
apply multiplicative sieving on this pair, with {37, 19, 7, 5} as our set of sieving
primes. �
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Our next aim is to prove our result when 2 ≤ q ≤ 4 and m0 ≥ 4. The lemma
below, proven in [8], is very useful towards that proof.

Lemma 4.8. Suppose m0 ≥ 4. If q = 4 and m 6∈ {9, 45}, then ρ ≤ 1/5. If
q = 3 and m 6= 16, then ρ ≤ 1/4. If q = 2 and m 6∈ {5, 9, 21}, then ρ ≤ 1/6.

Proposition 4.9. If m0 > 4, s 6= 1 and q < 5, then NA(w) > 0, unless (q,m)
is listed in Table 1.

Proof. First, assume q = 4. Lemma 4.8 implies that if m > 45, then ρ ≤ 1/5.
Moreover, Proposition 3.1 and Lemma 3.7 imply that NA(w) > 0, if qm/4 >
3 · 2.9 · 43m0/5, since here W (F0) < 43m0/5. This condition is satisfied for all
m0 ≥ 4, if m ≥ 4m0, thus we can focus on the cases m ≤ 45 and m0 ≤ m ≤ 2m0.
Working as in the proof of Proposition 4.7, we show that if

q3m/8 > 3 · 4514.7 · 4m0/5(4m0 − 3),

then NA(w) > 0. This condition is satisfied for m0 ≥ 62, if m = m0 and for
m0 ≥ 19, if m = 2m0. Now we can focus on m ≤ 61. A quick computation
reveals that there are 50 pairs (4,m) not examined in previous propositions for
those values of m, but only (4, 5) fails to satisfy Eq. (13), if we compute all
appearing quantities.

Next, assume q = 3. If m > 16, then NA(w) > 0, if qm/4 > 3 · 3.2 · 45m0/8,
as before. This is satisfied for all m0 > 4, if m ≥ 9m0, hence we can focus on
the cases m ≤ 16 and m0 ≤ m ≤ 3m0. As in the previous case, we have that
NA(w) > 0, if

q3m/8 > 3 · 4514.7 · 4m0/4(3m0 − 2).

This is true for m0 ≥ 247, if m = m0 and m0 ≥ 15, if m = 3m0. A quick
computation reveals that there exist 231 pairs (3,m) not settled yet. Among
those pairs, there are exactly 6 who fail to satisfy Eq. (13), for W (q0) < 3.2qm/4,
but only (3, 5) and (3, 7) fail to satisfy Eq. (13), if W (q0) is computed explicitly.

Finally, assume q = 2. If m > 21, then NA(w) > 0, if qm/4 > 3 ·2.9 ·47m0/12,
as before. This is satisfied for all m0 > 4, if m ≥ 8m0, hence we can focus on
the cases m ≤ 21 and m0 ≤ m ≤ 4m0. As in the previous cases, we have that
NA(w) > 0, if

q3m/8 > 3 · 4514.7 · 4m0/6(5m0 − 4).

This inequality holds for m0 ≥ 607 if m = m0, for m0 ≥ 53 if m = 2m0 and
for m0 ≥ 18 if m = 4m0. Another computation reveals that there are 588
pairs (2,m) not settled yet, all of which satisfy Eq. (13), with the simple bound
W (q0) < 2.9qm/4. �

We conclude this section with the delicate case m = 2.

Proposition 4.10. Suppose m = 2. If (q,m) is not listed in Table 1, then
NA(w) > 0.
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Table 1: Possible exceptions (q,m) from Section 4.

Proposition Possible exception pairs (q,m) #

4.2 (2, 3), (2, 4), (2, 6), (2, 8), (2, 12), (3, 3), (3, 4), (3, 6), (3, 12),
(4, 4), (4, 6), (5, 3), (5, 5), (7, 4), (8, 3), (8, 4), (8, 6), (9, 3),
(11, 3), (11, 4), (19, 4), (23, 3), (23, 4)

23

4.3 (4, 3), (5, 4), (7, 6), (8, 7), (9, 8), (11, 10), (13, 12), (16, 15) 8

4.4 (7, 3), (9, 4), (11, 5), (13, 3), (13, 4), (13, 6), (16, 3), (17, 4),
(19, 3), (25, 3)

10

4.6 (5, 8), (7, 12), (13, 8), (5, 16) 4

4.7 (5, 6), (7, 5) 2

4.9 (4, 5), (3, 5), (3, 7) 3

4.10 (2, 2), (3, 2), (4, 2), (5, 2), (7, 2), (11, 2) 6

Total: 56

Proof. Proposition 3.6 implies that NA(w) > 0, if q > 2W (q0). This is true
for q ≥ 97, for W (q0) < 4.9qm/4, from Lemma 3.7. From the 34 remaining pairs,
only 10 fail to satisfy the latter inequality, if we compute W (q0) separately for
each pair. Among those pairs, we find (29, 2), which manages to satisfy the
resulting inequality, if we apply multiplicative sieving as well, for {7} as the set
of sieving primes. The same holds for (16, 2) and {17}, for (13, 2) and {7, 3}
and for (8, 2) and {7}. The remaining pairs are listed in Table 1. �

Summing up, in this section we proved the following.

Theorem 4.11. Let A =
(
a b
c d

)
∈ GL2(Fq). If q 6= 2 or A 6= ( 1 1

0 1 ), there exist
some primitive x ∈ Fqm , such that both x and (ax+b)/(cx+d) produce a normal
Fq-basis of Fqm , unless (q,m) is one of the 56 pairs listed in Table 1.

5. Completion of the proof

In this section we examine the remaining cases one-by-one and identify the
true exceptions to our problem. In order to perform all the necessary tests, a
computer program was written in C, using Victor Shoup’s NTL library. All
pairs (q,m) appearing in Table 1 were dealt with fairly quickly. In this section,
A ◦ x stands for (ax+ b)/(cx+ d), where A =

(
a b
c d

)
∈ GL2(Fq) and x ∈ Fqm .

Our first and simplest case is q = 2, see Table 2. Here, only three matrices
had to be investigated, namely A0 := ( 1 1

1 0 ), A1 := ( 1 0
1 1 ) and A2 := ( 0 1

1 1 ). In
Table 2, f ∈ F2[X] is an irreducible polynomial of degree m, and β is a root
of f , such that F2m = F2[β]. From Table 2, we see that when q = 2, the only
exceptions are m = 3 and m = 4, the exceptions already present in Theorem 1.2.

Next, in Tables 3 and 4, we present the results, when q is an odd prime.
Before continuing, we note a few things regarding the matrices. First of all,
as already noted, we do not need to check diagonal and anti-diagonal matrices,
since those cases have already been settled by Theorems 1.1 and 1.2 respectively.
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Table 2: q = 2.

m f ∈ F2[X] irreducible x ∈ F2m primitive, such that x and Ai ◦ x free

2 1 +X +X2 β for i = 0, 1, 2

3 1 +X +X3 1 + β for i = 0, 2; None for i = 1

4 1 +X +X4 None for i = 0; 1 + β3 for i = 1, 2

6 1 +X +X6 β5 for i = 0; 1 + β5 for i = 1, 2

8 1 +X +X3 +X4 +X8 1 + β5 for i = 0, 1, 2

12 1 +X3 +X12 β+β2+β3+β9 for i = 0; 1+β+β9 for i = 1, 2

Table 3: q ∈ {3, 5}.

q m f ∈ Fq[X] irreducible x ∈ Fqm primitive, such that x and A ◦ x free

3 2 2 +X +X2 β (6); 1 + β (4)
3 2 + 2X + 2X2 +X3 1 + β (7); 2 + β (3)
4 2+2X+X2+X3+X4 2 + 2β + β2 (3); 1 + β + 2β2 (1); β (3); 2β (3)
5 1 +X2 + 2X3 +X5 1 + 2β (6); 2 + 2β (3); β + β2 (1)
6 1+2X+2X2+2X3+

2X4 +X5 +X6
2β + β2 (3); 2 + β + β2 (7)

7 1 +X + 2X2 +X4 +
X5 +X6 +X7

β (6); 1 + 2β (3); β + β2 (1)

12 1+2X +X2 +2X4 +
X9 + 2X10 +X12

2 + β + β5 (5); 1 + 2β + β5 (5)

5 2 4 + 3X +X2 1 + β (22); 2 + β (6)
3 1 + 3X +X2 +X3 1 + β (22); 2 + β (5); 1 + 2β (1)
4 4+3X +X2 +2X3 +

X4
4 + 2β (7); 2 + β (15); 1 + 3β (2); None (4)

5 1+2X+4X2+3X3+
2X4 +X5

4 + β (23); 1 + 2β (5)

6 3+2X +X3 +3X4 +
2X5 +X6

4 + 2β + β2 (18); 3β + β2 (4); 2 + 3β + β2 (5);
4 + β + 2β2 (1)

8 3+2X+3X3+2X4+
3X5 + 4X6 +X8

3 + 2β (7); 2 + 3β (2); 4 + β (15); 4 + β3 (4)

16 1+2X +3X4 +X5 +
3X6 + 3X8 + 3X9 +
X10 + 3X11 + X12 +
4X13+4X14+2X15+
X16

4 + 3β + β3 (3); 3β + β3 (10); 1 + 3β + β3(8);
4 + 2β + β3 (7)
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Table 4: q is an odd prime ≥ 7.

q m f ∈ Fq[X] irreducible x ∈ Fqm primitive, such that x and A ◦ x free

7 2 4 +X +X2 3 + β (46); 5 + β (8)
3 6 + 5X2 +X3 2 + β (34); 4 + 2β (15); 3 + 3β (2); 2 + 3β (2);

4 + 3β (1)
4 3 +X2 + 4X3 +X4 β (35); 4 + β (4); 2 + β (14); 1 + 2β (1)
5 4+X +3X2 +2X3 +

5X4 +X5
β (46); 2 + β (7); 6 + β (1)

6 6+2X+4X3+5X4+
X6

6 + β + β2 (17); 3 + 4β + β2 (10); 5 + 4β + β2

(2); 1 + 4β + β2 (25)
12 3+6X +X2 +5X3 +

4X5 + 3X7 + 2X8 +
3X9 + 2X10 +X11 +
X12

1 + 6β + β2 (7); 4 + 3β + 3β2 (1); 6 + 2β + 2β2

(7); 6+β+β2 (14); 3+β+β2 (22); 5+2β+2β2

(1); 3 + 5β + 2β2 (1); 5 + 6β + β2 (1)

11 2 7 + 4X +X2 β (118); 4 + β (12)
3 10 + 2X +X2 +X3 6 + β (118); 2 + 2β (2); 10 + β (10)
4 5+7X+4X2+2X3+

X4
2 + β (118); 4 + 2β (12)

5 8+9X+8X2+6X3+
2X4 +X5

5+ β+ β2 (13); 6+ β+ β2 (3); 1+ β+ β2 (78);
4 + β + β2 (35); 7 + β + β2 (1)

10 9+8X+9X2+7X3+
4X4 + 7X5 + 7X6 +
2X7+X8+8X9+X10

4 + β + β2 (11); 4 + 3β + β2 (1); 1 + β2 (48);
9 + β + β2 (2); 6 + β + β2 (21); 7 + β + β2 (1);
4 + β2 (32); 9 + β2 (13); 2 + 3β + β2 (1)

13 3 3 +X + 6X2 +X3 1 + β (142); 9 + β (33); 11 + β (4); 12 + β (1)
4 4+8X+7X2+9X3+

X4
6 + β (33); 4 + β (142); 11 + β (5)

6 10+11X+X2+3X3+
X4 + 3X5 +X6

4+2β+β2 (119); 8+2β+β2 (43); 4+3β+β2

(14); 8+3β+β2 (2); 8+5β+β2 (1); 5+5β+β2

(1)
8 6+8X+7X2+2X3+

12X4 +2X5 +4X6 +
2X7 +X8

4 + β (33); β (130); 5 + 2β (13); 8 + 2β (1); 2β
(3)

12 4+11X+3X2+8X3+
7X4 + 3X5 + 2X6 +
3X7 + 9X8 + 9X9 +
3X10 + 10X11 +X12

5+β+β2 (94); 8+3β+β2 (2); 2+2β+β2 (2);
7 + β + β2 (41); 9 + β + β2 (27); 4 + 3β + β2

(1); 4 + 2β + β2 (1); 7 + 2β + β2 (12)

17 4 4 + 12X + 5X2 +X4 5 + β (58); 10 + β (22); 4 + β (222); 13 + β (2)

19 3 5 + 3X + 4X2 +X3 β (322); 1 + β (51); 3 + β (5)
4 3 + 6X + 10X2 +X4 4 + β (358); 7 + β (20)

23 3 1 + 4X + 7X2 +X3 1 + β (526); 2 + β (23); 3 + β (1)
4 13 + 8X + 18X2 +

8X3 +X4
6 + β2 (482); 7 + β2 (63); 17 + β2 (4); 18 + β2

(1)
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Table 5: q is composite.

q h ∈ Fp[X] m f ∈ Fq[X] x ∈ Fqm

4 1+X+X2 2 α+ αX +X2 β (18)
3 1 + α+X3 1+α+β+β2 (3); 1+β+β2

(8); α + αβ + β2 (3); 1 +
α+ αβ + β2 (1); None (3)

4 α+X + (1 + α)X3 +X4 β (14); αβ (4)
5 1 + αX3 +X4 +X5 α + β (10); 1 + α + β (6);

αβ (1); 1 + β + β2 (1)
6 α+X +αX2 +X3 +αX4 +

X5 +X6
1 + β3 (14); 1 + α + (1 +
α)β + β3 (4)

8 1+X+X3 3 α2+(1+α2)X+(α+α2)X2+
X3

1 + β (9); β (61)

4 α2 +αX +(1+α+α2)X2 +
X3 +X4

1 + α+ β (62); α2 + β (8)

6 α + (1 + α + α2)X + (1 +
α2)X2 + (1 + α)X3 + (α +
α2)X4 + αX5 +X6

α+ β3 (70)

7 1+X+(1+α2)X2+αX3+
αX4 + α2X5 + α2X6 +X7

1+β+β2 (40); 1+α+β+
β2 (24); 1 + α2 + β + β2

(1); α + α2 + β + β2 (1);
α2 + β + β2 (4)

9 2+X+X2 3 2 + 2α+ 2αX2 +X3 β (80); 1 + β (8)
4 2 + α + αX + (1 + α)X2 +

αX3 +X4
β2 (62); 2+β2 (22); α+β2

(4)
8 2+(1+α)X+(2+2α)X2+

(2 + 2α)X3 + (1 + α)X5 +
2X6 + (2 + α)X7 +X8

1+β (27); α+β (2); 2+β
(12); β (46); 1 + α+ β (1)

16 1+X+X4 3 1+α+α3+(1+α2+α3)X+
X2 +X3

β (223); α + β (41); α +
α2 + β (4); 1α+ β (2)

15 (α + α2 + α3) + (1 + α +
α2 + α3)X + (1 + α + α2 +
α3)X2 + (α+ α2)X3 + (1 +
α2)X4+(1+α+α2+α3)X5+
(α+ α2)X6 + α3X7 + (α2 +
α3)X8 + (α+ α2)X9 + (1 +
α3)X10 +(1+α+α2)X11 +
(1+α+α2 +α3)X12 +(α+
α2)X13+(α+α2+α3)X14+
X15

α + β3 (103); α + α3 + β3

(62); 1 + α2 + α3 + β3 (4);
1+α+(1+α2)β+β3 (15);
1+α+(1+α+α2)β+β3 (1);
1 + α2 + α3 + αβ + β3 (1);
α+ α2 + β3 (63); 1 + α3 +
αβ + β3 (1); 1 + α + α2 +
αβ + β3 (2); α3 + αβ + β3

(3); α+ αβ + β3 (15)

25 4+3X+X2 3 α+(2+4α)X+(4+4α)X2+
X3

β (574); 1 + β (68); 2 + β
(6)
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Moreover, it is clear, that if A,B ∈ GL2(Fq) and B = αA, for some α ∈ F∗q ,
then A ◦ x = B ◦ x. Furthermore, x ∈ Fqm is free if and only if αx is free, for
all α ∈ F∗q . It follows that, for our purposes, it suffices to check the matrices

A =
(
a b
c d

)
∈ GL2(Fq), where either d = b = 1 and c, a 6= 0, d = 0 6= a and

b = c = 1, a = d = 1 and b = 0 6= c, d = b = 1 and c = 0 6= a and, finally,
d = b = 1 and c 6= 0 = a, i.e. (q− 1)(q+ 2) matrices. As before, f ∈ Fq[X] is an
irreducible polynomial of degree m, and β is a root of f , such that Fqm = Fq[β].
Moreover, in the last column, we list elements x ∈ Fqm that are primitive and
free and inside the following parenthesis the number of matrices A ∈ GL2(Fq)
we investigated and found A ◦ x to be free. An interesting notice in Table 3 is
that, not only we have no new exceptions, than those of Theorem 1.2, but also
the pair (3, 4) is not an exception for any of the matrices we investigated, i.e.
it is an exception only when A is anti-diagonal. On the other hand, the pair
(5, 4) yields new exceptions for 4 matrices, the matrices ( a 1

1 0 ), where a 6= 0. It
follows that (5, 4) is an exception for all A = ( a bc 0 ) ∈ GL2(F5).

Finally, in Table 5, we present the results, when q is composite. All the
previous arguments about the matrices hold here as well. Moreover, h ∈ Fp[X]
is irreducible and α is a root of h, such that Fq = Fp[α]. Also, we respect all
previous conventions. We notice that only the pair (4, 3), which also appears
in Theorem 1.2, yields exceptions, for the 3 matrices ( a 1

1 0 ), where a 6= 0, hence
(4, 3) is an exception for all A = ( a bc 0 ) ∈ GL2(F4).

The proof of Theorem 1.4 is now complete.
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