Prescribing coefficients of invariant irreducible polynomials

Giorgos Kapetanakis

Supported by TÜBiTAK Project 114F432

May 20, 2017

- By \mathbb{F}_{q} we denote the finite field of q elements, where q is a prime power. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}(2, q)$ and $F \in \mathbb{F}_{q}[X]$. We define

$$
A \circ F=(b X+d)^{\operatorname{deg}(F)} F\left(\frac{a X+c}{b X+d}\right) .
$$

It is clear that the above defines an action of $\mathrm{GL}(2, q)$ on $\mathbb{F}_{q}[X]$.

- We define the following equivalence relations for $A, B \in \mathrm{GL}(2, q)$ and $F, G \in \mathbb{F}_{q}[X]$.

$$
\begin{aligned}
& A \sim B \Longleftrightarrow \exists C \in \mathrm{GL}(2, q) \text { such that } A=C^{-1} B C, \\
& A \sim_{q} B \Longleftrightarrow A=\lambda B, \text { for some } \lambda \in \mathbb{F}_{q}^{*} \text { and } \\
& F \sim_{q} G: \Longleftrightarrow F=\lambda G, \text { for some } \lambda \in \mathbb{F}_{q}^{*}
\end{aligned}
$$

- For $A \in \mathrm{GL}(2, q)$ and $n \in \mathbb{N}$, we define

$$
\mathbb{I}_{n}^{A}:=\left\{P \in \mathbb{I}_{n} \mid[A \circ P]=[P]\right\},
$$

where \mathbb{I}_{n} stands for the set of monic irreducible polynomials of degree n over \mathbb{F}_{q}.

- Recently, the estimation of the cardinality of \mathbb{I}_{n}^{A} has gained attention (Garefalakis 2010, Stichtenoth-Topuzoğlu 2011, Reis 2017).

A famous result in the study of the distribution of polynomials over \mathbb{F}_{q} is the following.

Theorem (Hansen-Mullen irreducibility conjecture)

Let $a \in \mathbb{F}_{q}, n \geq 2$ and fix $0 \leq j<n$. There exists an irreducible polynomial $P(X)=X^{n}+\sum_{k=0}^{n-1} p_{k} X^{k} \in \mathbb{F}_{q}[X]$ with $p_{j}=a$, except when
(1) $j=a=0$ or
(2) q is even, $n=2, j=1$, and $a=0$.

- The latter had been conjectured by Hansen and Mullen 1992.
- It was initially proved for $q>19$ or $n \geq 36$ by Wan 1997,
- while Han and Mullen 1998 verified the remaining cases by computer search.
- Several extensions to these results have been obtained (e.g. Cohen 2005, Cohen-Prešern 2006, Garefalakis 2008, Fan 2009, Panario-Tzanakis 2011).
- While most authors use a variation of Wan's approach, recently new methods have emerged (Ha 2016, Pollack 2013, Tuxanidy-Wang 2017).
- One special class of polynomials are self-reciprocal polynomials, that is polynomials such that $F^{R}:=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \circ F=F$, where F^{R} is called the reciprocal of F.
- The problem of prescribing coefficients of such irreducible polynomials has been investigated (Garefalakis 2010, Garefalakis-Kapetanakis 2012, Garefalakis-Kapetanakis 2014).
- Nonetheless, a description of the coefficient of the polynomials of \mathbb{I}_{n}^{A} has not yet been investigated for arbitrary A.

Here are the results of a quick experiment for $q=3$.

$$
\begin{array}{l|l|l}
A=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right) & A=\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right) & A=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right) \\
\hline X^{6}+X^{4}+X^{3}+X^{2}+2 X+2 & X^{6}+2 X^{3}+2 X^{2}+X+1 & X^{6}+2 X^{2}+1 \\
X^{6}+X^{4}+2 X^{3}+X^{2}+X+2 & X^{6}+X^{4}+2 X^{2}+2 X+2 & X^{6}+X^{4}+2 X^{2}+1 \\
& X^{6}+2 X^{4}+X^{3}+2 X+1 & X^{6}+2 X^{4}+1 \\
& X^{6}+2 X^{4}+X^{3}+X^{2}+X+2 & X^{6}+2 X^{4}+X^{2}+1
\end{array}
$$

Table: The set \mathbb{I}_{6}^{A} for different A.

- Here, we confine ourselves to the case when $A \in \mathrm{GL}(2, q)$ is lower-triangular.
- We distinguish two cases: when $A \in \mathrm{GL}(2, q)$ has one eigenvalue and when A has two eigenvalues.
- The conditions, whether a certain coefficient of some $F \in \mathbb{I}_{n}^{A}$ can or cannot take any value in \mathbb{F}_{q} are provided.
- For the former case we prove sufficient conditions for the existence of polynomials of \mathbb{I}_{n}^{A} that indeed have these coefficients.

If A has one eigenvalue, then

$$
[A]= \begin{cases}{\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right],} & \text { or } \\
{\left[\left(\begin{array}{ll}
1 & 0 \\
\alpha & 1
\end{array}\right)\right],} & \text { for some } \alpha \in \mathbb{F}_{q}^{*}\end{cases}
$$

The first situation is already settled. For the second case, we have that that $A \circ F \sim_{q} F \Longleftrightarrow F(X) \sim_{q} F(X+\alpha) \Longleftrightarrow F(X)=F(X+\alpha)$. The polynomials with this property are called periodic. We prove that the following characterizes those polynomials explicitly.

Lemma

Let $\alpha \in \mathbb{F}_{q}^{*}$. Some $F \in \mathbb{F}_{q}[X]$ satisfies $F(X)=F(X+\alpha)$ if and only if there exist some $G \in \mathbb{F}_{q}[X]$ such that $F(X)=G\left(X^{p}-\alpha^{p-1} X\right)$.

It is now clear that we need the following theorem.

Theorem (Agou, 1977)

Let q be a power of the prime $p, \alpha \in \mathbb{F}_{q}$ and $P \in \mathbb{I}_{n}$. The composition $P\left(X^{p}-\alpha^{p-1} X\right)$ is irreducible if and only if $\operatorname{Tr}\left(p_{n-1} / \alpha^{p}\right) \neq 0$, where Tr stands for the trace function $\mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$.

So, the monic irreducible periodic polynomials are those of the form $Q(X)=P\left(X^{p}-\alpha^{p-1} X\right)$, for some $P \in \mathbb{I}_{n}$ such that $\operatorname{Tr}\left(p_{n-1} / \alpha^{p}\right) \neq 0$. So, the m-th coefficient of Q, where $0 \leq m \leq p n$, is

$$
q_{m}=\sum_{\substack{\max (0, n-m) \leq i \leq n-\lceil m / p\rceil \\ i \equiv m-n \\(\bmod (p-1))}} \gamma_{i} p_{i}^{R},
$$

that is a linear expression of some of the $\mu+1$ low-degree coefficients of the reciprocal of P, where μ is the largest number such that $\gamma_{\mu} \neq 0$.

Regarding μ, observe that
(1) it is possible for such μ to not exist (for example when $m=n p-1$ and $p>2$) and
(2) if $\mu=0$ or 1 , then the value of q_{m} has to be a given combination of p_{0}^{R} and p_{1}^{R}, but since neither of them is chosen arbitrarily, it can only take certain values.
So, from now on we assume that μ exists and $\mu \geq 2$.

We define to the following map

$$
\sigma: \mathbb{G}_{\mu} \rightarrow \mathbb{F}_{q}, \quad H \mapsto \sum_{\substack{\max (0, n-m) \leq i \leq \mu \\ i \equiv m-n}} \gamma_{i} h_{i},
$$

where $\mathbb{G}_{\mu}:=\left\{f \in \mathbb{F}_{q}[X] \mid \operatorname{deg}(f) \leq \mu, f_{0}=1\right\}$. We will need to correlate the inverse image of σ with a set that is easier to handle. The following, serves that purpose.

Proposition (Garefalakis-Kapetanakis, 2012)

Let $\kappa \in \mathbb{F}_{q}$. Set $F \in \mathbb{G}_{\mu}$ with $f_{i}:=\gamma_{i-1} \gamma_{\mu}^{-1}$ for $0<i<\mu$ and $f_{\mu}:=\gamma_{\mu}^{-1}\left(\gamma_{0}-\kappa\right)$. The map

$$
\tau: \mathbb{G}_{\mu-1} \rightarrow \sigma^{-1}(\kappa), \quad H \mapsto H F^{-1} \quad\left(\bmod X^{\mu+1}\right)
$$

is a bijection.

The following summarizes our observations.

Proposition

Let $\kappa \in \mathbb{F}_{q}$ and $0 \leq m \leq(p-1) n$. If m, n and p are such that there exist some i with $\lceil m / p\rceil \leq i \leq \min (m, n-1)$ and $i \equiv m(\bmod (p-1))$ and there exists some $P \in \mathbb{J}_{n}$ such that $\operatorname{Tr}\left(p_{1} / \alpha^{p-1}\right) \neq 0$ such that $P \equiv H F^{-1}$ $\left(\bmod X^{\mu+1}\right)$ for some $H \in \mathbb{G}_{\mu-1}$, then there exists some $Q \in \mathbb{I}_{p n}$, such that $Q(X)=Q(X+\alpha)$ and $q_{m}=\kappa$.

We define the following weighted sum

$$
w:=\sum_{H \in \mathbb{G}_{\mu-1}} \Lambda(H) \sum_{\substack{P \in \mathbb{J}_{n}, \psi(P) \neq 1 \\ P \equiv H F^{-1},}} 1
$$

where F is the polynomial defined earlier and Λ is the von Mangoldt function. Clearly, if $w \neq 0$ we have our desired result.

- Let M be a polynomial of \mathbb{F}_{q} of degree ≥ 1. The characters of the group $\left(\mathbb{F}_{q}[X] / M \mathbb{F}_{q}[X]\right)^{*}$ are called Dirichlet characters modulo M.
- Let $U:=\left(\mathbb{F}_{q}[X] / X^{\mu+1} \mathbb{F}_{q}[X]\right)^{*}$. Furthermore, set

$$
\psi: U \rightarrow \mathbb{C}^{*}, \quad F \mapsto \exp \left(2 \pi i \operatorname{Tr}\left(f_{1} /\left(f_{0} \alpha^{p}\right)\right) / p\right)
$$

and notice that for $P \in \mathbb{J}_{n}$ (where $P \in \mathbb{J}_{n} \Longleftrightarrow P^{R} \in \mathbb{I}_{n}$), $\operatorname{Tr}\left(p_{1} / \alpha^{p}\right)=0 \Longleftrightarrow \psi(P) \neq 1$.

- Notice that ψ is also a Dirichlet character modulo $X^{\mu+1}$, while it is clear that ord $(\psi)=p$.

Proposition

Let χ and ψ be Dirichlet characters modulo M, such that $\operatorname{ord}(\psi)=p$ and $\chi\left(\mathbb{F}_{q}^{*}\right)=1$.
(1) If $\chi \notin\langle\psi\rangle$, then $\left|\sum_{\substack{P \in \mathbb{I}_{n} n \\ \psi(P) \neq 1}} \chi(P)\right| \leq \frac{2(p-1)}{p n} \cdot\left(\operatorname{deg}(M) q^{n / 2}+1\right)$,
2. If $\chi \in\langle\psi\rangle^{*}$, then $\left|\sum_{\substack{P \in \mathbb{I}_{n} \\ \psi(P) \neq 1}} \chi(P)\right| \leq \frac{\pi_{q}(n)}{p}+\frac{2 p-3}{p n} \cdot\left(\operatorname{deg}(M) q^{n / 2}+1\right)$.

3 If $\chi=\chi_{0}$, then $\left|\sum_{\substack{P \in \mathbb{I}_{n} n \\ \psi(P) \neq 1}} \chi(P)\right| \geq \frac{(p-1) \pi_{q}(n)}{p}-\frac{p-1}{p n} \cdot\left(\operatorname{deg}(M) q^{n / 2}+1\right)$, Where $\pi_{q}(n)$ stands for the number of monic irreducible polynomials of degree n over \mathbb{F}_{q}.

By adjusting Wan's approach to our case, we prove that a sufficient condition for our desire result is

$$
\begin{aligned}
q^{n / 2}\left(q^{(\mu-1) / 2}-4 \mu\right)+ & \frac{4 \mu}{q-1} \geq \\
& 2 \mu q^{\mu}\left(4 \mu+\frac{1}{2 q^{\mu / 2}}+\frac{4 \mu}{q^{\mu}}+\frac{1}{2 \mu q^{(\mu+1) / 2}(q-1)}\right) .
\end{aligned}
$$

The above is satisfied for $q \geq 67$ for all $2 \leq \mu \leq n / 2$. It is also satisfied for $n \geq 26$ for all q and $2 \leq \mu \leq n / 2$.

Theorem

Let $[A]=\left[\left(\begin{array}{ll}1 & 0 \\ \alpha & 1\end{array}\right)\right] \in \operatorname{PGL}(2, q), n^{\prime} \in \mathbb{Z}$ and $\alpha \neq 0$, then $\mathbb{I}_{n^{\prime}}=\emptyset \Longleftrightarrow p \nmid n^{\prime}$. Suppose $n^{\prime}=p n$, fix $0 \leq m \leq p n$ and for $\max (0, n-m) \leq i \leq n-\lceil m / p\rceil$ set

$$
\gamma_{i}:= \begin{cases}\binom{n-i}{\frac{n-n+i}{p-1}}(-\alpha)^{p-n+i}, & \text { if } i \equiv m-n \quad(\bmod (p-1)) \\ 0, & \text { otherwise }\end{cases}
$$

and let μ be the maximum i such that $\gamma_{i} \neq 0$. In particular, $\mu \leq n-\lceil m / p\rceil$.
(1) If μ does not exist, then $p_{m}=0$ for all $P \in \mathbb{I}_{n^{\prime}}^{A}$.
(2) If $\mu=0$, then $p_{m}=\gamma_{0}$ for all $P \in \mathbb{I}_{n^{\prime}}^{A}$.
(3) If $\mu=1$, then for all $P \in \mathbb{I}_{n^{\prime}}^{A}$, we have that $p_{m}=\gamma_{0}+\gamma_{1} \kappa$ for some $\kappa \in \mathbb{F}_{q}$ with $\operatorname{Tr}\left(\kappa / \alpha^{p}\right) \neq 0$. Conversely, there exists some $P \in \mathbb{I}_{n^{\prime}}^{A}$ such that $p_{m}=\gamma_{0}+\gamma_{1} \kappa$ for all $\kappa \in \mathbb{F}_{q}$ with $\operatorname{Tr}\left(\kappa / \alpha^{p}\right) \neq 0$.
(4) If $2 \leq \mu \leq n / 2$, there exists some $P \in \mathbb{I}_{n^{\prime}}^{A}$ such that $p_{m}=\kappa$ for all $\kappa \in \mathbb{F}_{q}$, given that $q \geq 65$ or $n \geq 26$.

If A has two distinct eigenvalues, then $[A] \sim[B]$, where $B=\left(\begin{array}{cc}\alpha & 0 \\ 0 & 1\end{array}\right)$ for some $\alpha \in \mathbb{F}_{q}^{*}$. It is clear that $F \in \mathbb{F}_{q}[X]$ satisfies $B \circ F \sim_{q} F \Longleftrightarrow F(X) \sim_{q} F(\alpha X)$. First, we prove.

Lemma

Let α be an element of \mathbb{F}_{q}^{*} of multiplicative order r. A polynomial $F \in \mathbb{F}_{q}[X]$ satisfies $F(X) \sim_{q} F(\alpha X)$ if and only if there exists some $G \in \mathbb{F}_{q}[X]$ and $k \in \mathbb{Z}_{\geq 0}$ such that $F(X)=X^{k} G\left(X^{r}\right)$.

It is clear now that the elements of $\mathbb{I}_{n^{\prime}}^{B}$ should be of the form $P\left(X^{r}\right)$, for some $P \in \mathbb{I}_{n}$. The below characterizes the irreducibility of such compositions.

Theorem (Cohen, 1969)

Let $P \in \mathbb{I}_{n}$ and r be such that $\operatorname{gcd}(r, q)=1$, the square-free part of r divides $q-1$ and $4 \nmid \operatorname{gcd}\left(r, q^{n}+1\right)$, then $P\left(X^{r}\right)$ is irreducible if and only if $\operatorname{gcd}(r,(q-1) / e)=1$, where e is the order of $(-1)^{n} p_{0}$.

- The irreducibility of $P\left(X^{r}\right)$ depends solely on the choice of p_{0}.
- It is known that we have exactly $\phi(r)(q-1) / r$ choices for p_{0}. We denote this set by \mathfrak{C}, while the primitive elements of \mathbb{F}_{q} are in \mathfrak{C}.
- Notice that we already have enough to prescribe the coefficients of the polynomials in $\mathbb{I}_{n^{\prime}}^{B}$.

Our next step is to move to the case of arbitrary A.

The lemma below provides a correlation between $\mathbb{I}_{n^{\prime}}^{C}$ and $\mathbb{I}_{n^{\prime}}^{D}$, if $[C] \sim[D]$.

Lemma

Suppose that $[C],[D] \in \operatorname{PGL}(2, q)$ such that $[C] \sim[D]$, then map

$$
\phi:\left(\mathbb{I}_{n^{\prime}}^{C} / \sim_{q}\right) \rightarrow\left(\mathbb{I}_{n^{\prime}}^{D} / \sim_{q}\right),[F] \mapsto[U \circ F],
$$

where $U \in \mathrm{GL}(2, q)$ is such that $[D]=\left[U C U^{-1}\right]$, is a bijection.
Before proceeding, we observe that the above combined with what we already know about $\mathbb{I}_{n^{\prime}}^{B}$ imply that $\mathbb{I}_{n^{\prime}}^{A} \neq \emptyset \Longleftrightarrow r \mid n^{\prime}$, so from now on we assume that $n^{\prime}=r n$. Moreover, by utilizing the above bijection, given that $[A] \sim[B]$, we can write any coefficient of $Q \in \mathbb{I}_{n^{\prime}}^{A}$, as a linear expression of the coefficients of some $P^{\prime} \in \mathbb{I}_{n^{\prime}}^{B}$. In particular, since both A and B are lower-triangular, there exists some $U=\left(\begin{array}{ll}a & 0 \\ c & d\end{array}\right) \in \mathrm{GL}(2, q)$ such that $Q=U \circ P^{\prime}$.

It follows that the m-th coefficient of Q is

$$
q_{m}=\sum_{i=0}^{n-\lceil m / r\rceil} \delta_{i} p_{n-i}
$$

i.e. a linear expression of the high-degree coefficients of P, where P is such that $P^{\prime}(X)=P^{R}\left(X^{r}\right)$. Further, we define μ as the largest i such that $\delta_{i} \neq 0$ and $r \mid i$. If such μ does not exist, then $q_{m}=0$. If $\mu=0$, then $q_{m}=\delta_{0} \mathfrak{c}$ for any $\mathfrak{c} \in \mathfrak{C}$. So, from now we assume that $\mu \geq 1$.

With the latter in mind, we fix some $\mathfrak{c} \in \mathfrak{C}$ and seek irreducible polynomials of degree n with $p_{0}=\mathfrak{c}$ that satisfy $\sum_{i=0}^{\mu} \delta_{i} p_{i}=\mathfrak{c} \kappa$ for some $\kappa \in \mathbb{F}_{q}$. Next, we fix $\sigma: \mathbb{G}_{\mu} \rightarrow \mathbb{F}_{q}, H \mapsto \sum_{i=0}^{\mu} \delta_{i} h_{i}$ and set

$$
w:=\sum_{H \in \mathbb{G}_{\mu-1}} \Lambda(H) \sum_{\substack{P \in \mathbb{I}_{n} \\ P \equiv \mathrm{c} H F_{\mathrm{c}}^{-1}\left(\bmod X^{\mu+1}\right)}} 1 .
$$

It is now clear that if $w \neq 0$, then there exists some $P \in \mathbb{I}_{n}$ with $p_{0} \in \mathfrak{C}$ that satisfies $\sum_{i=0}^{\mu} \delta_{i} p_{i}=\kappa \mathfrak{c}$, which in turn implies the existence of some $Q \in \mathbb{I}_{n^{\prime}}^{A}$ with $q_{m}=\kappa$.

- Working as before, we get the following condition.

$$
q^{n / 2} \geq 2 n(\mu+1) q^{(\mu+1) / 2}+\frac{q}{q+1}
$$

- This is satisfied for all $1 \leq \mu \leq n / 2$ for $n \geq 5$ and $q \geq 31$ and for $n \geq 47$ and arbitrary q.

Theorem

Let $[A] \in \mathrm{PGL}(2, q)$ be such that $[A] \sim\left[\left(\begin{array}{cc}\alpha & 0 \\ 0 & 1\end{array}\right)\right]$ for some $\alpha \in \mathbb{F}_{q}$ of order $r>1$ and $0 \leq m \leq n^{\prime}$. First, $\mathbb{I}_{n^{\prime}}^{A} \neq \emptyset \Longleftrightarrow r \mid n^{\prime}$, so assume $n^{\prime}=r n$. Further, set $\mathfrak{C}:=\left\{x \in \mathbb{F}_{q} \mid \operatorname{gcd}(r,(q-1) / \operatorname{ord}(x))=1\right\}$. If $[A]=\left[\left(\begin{array}{cc}\alpha & 0 \\ 0 & 1\end{array}\right)\right]$, then for any $P \in \mathbb{I}_{n^{\prime}}^{A}, p_{i}=0$ for all $r \nmid m$ and $p_{0} \in \mathfrak{C}$, while for any $\kappa \in \mathbb{F}_{q}$ there exists some $P \in \mathbb{I}_{n^{\prime}}^{A}$ with $p_{m}=\kappa$ for any $m \neq 0, r \mid m$, while the same holds for $m=0$ and $\kappa \in \mathfrak{C}$. If $[A] \neq\left[\left(\begin{array}{cc}\alpha & 0 \\ 0 & 1\end{array}\right)\right]$, compute $a, c, d \in \mathbb{F}_{q}$ such that $[A]=\left[U B U^{-1}\right]$, where $B=\left(\begin{array}{cc}\alpha & 0 \\ 0 & 1\end{array}\right)$ and $U=\left(\begin{array}{cc}a & 0 \\ c & d\end{array}\right)$ and for
 $\mu:=\max \left\{j: \delta_{j} \neq 0\right\}$. In particular $\mu \leq n-\lceil m / r\rceil$.
(1) If μ does not exist, then $p_{m}=0$ for all $P \in \mathbb{I}_{n}^{A}$.
(2) If $\mu=0$, then for all $P \in \mathbb{I}_{n^{\prime}}^{A}$, we have that $p_{m}=\delta_{0} \mathfrak{c}$ for some $\mathfrak{c} \in \mathfrak{C}$. Conversely, there exists some $P \in \mathbb{I}_{n^{\prime}}^{A}$ with $p_{m}=\delta_{0} \mathfrak{c}$ for all $\mathfrak{c} \in \mathfrak{C}$.
3. If $0<\mu<n / 2$ then there exists some $P \in \mathbb{I}_{n^{\prime}}^{A}$ with $p_{m}=\kappa$ for all $\kappa \in \mathbb{F}_{q}$, given that $n \geq 5$ and $q \geq 31$ or $n \geq 47$.

Thank You!

