

FACULTY OF ENGINEERING AND NATURAL SCIENCES

Prescribing coefficients of invariant irreducible polynomials

Giorgos Kapetanakis

Supported by TÜBİTAK Project 114F432

May 20, 2017

• By \mathbb{F}_q we denote the finite field of q elements, where q is a prime power. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, q)$ and $F \in \mathbb{F}_q[X]$. We define

$$A \circ F = (bX + d)^{\deg(F)} F\left(\frac{aX + c}{bX + d}\right)$$

It is clear that the above defines an action of $\operatorname{GL}(2,q)$ on $\mathbb{F}_q[X]$.

• We define the following equivalence relations for $A, B \in GL(2, q)$ and $F, G \in \mathbb{F}_q[X]$.

$$A \sim B \iff \exists C \in \operatorname{GL}(2, q) \text{ such that } A = C^{-1}BC,$$

$$A \sim_q B : \iff A = \lambda B, \text{ for some } \lambda \in \mathbb{F}_q^* \text{ and }$$

$$F \sim_q G : \iff F = \lambda G, \text{ for some } \lambda \in \mathbb{F}_q^*$$

• For $A \in GL(2, q)$ and $n \in \mathbb{N}$, we define

$$\mathbb{I}_n^A := \{ P \in \mathbb{I}_n \mid [A \circ P] = [P] \},\$$

where \mathbb{I}_n stands for the set of monic irreducible polynomials of degree n over \mathbb{F}_q .

• Recently, the estimation of the cardinality of \mathbb{I}_n^A has gained attention (Garefalakis 2010, Stichtenoth-Topuzoğlu 2011, Reis 2017).

A famous result in the study of the distribution of polynomials over \mathbb{F}_q is the following.

Theorem (Hansen-Mullen irreducibility conjecture)

Let $a \in \mathbb{F}_q$, $n \ge 2$ and fix $0 \le j < n$. There exists an irreducible polynomial $P(X) = X^n + \sum_{k=0}^{n-1} p_k X^k \in \mathbb{F}_q[X]$ with $p_j = a$, except when 1 j = a = 0 or 2 q is even, n = 2, j = 1, and a = 0.

- The latter had been conjectured by Hansen and Mullen 1992.
- It was initially proved for q > 19 or $n \ge 36$ by Wan 1997,
- while Han and Mullen 1998 verified the remaining cases by computer search.
- Several extensions to these results have been obtained (e.g. Cohen 2005, Cohen-Prešern 2006, Garefalakis 2008, Fan 2009, Panario-Tzanakis 2011).
- While most authors use a variation of Wan's approach, recently new methods have emerged (Ha 2016, Pollack 2013, Tuxanidy-Wang 2017).

- One special class of polynomials are self-reciprocal polynomials, that is polynomials such that $F^R := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \circ F = F$, where F^R is called the reciprocal of F.
- The problem of prescribing coefficients of such irreducible polynomials has been investigated (Garefalakis 2010, Garefalakis-Kapetanakis 2012, Garefalakis-Kapetanakis 2014).
- Nonetheless, a description of the coefficient of the polynomials of \mathbb{I}_n^A has not yet been investigated for arbitrary A.

Here are the results of a quick experiment for q = 3.

Table: The set \mathbb{I}_6^A for different A.

- Here, we confine ourselves to the case when $A\in \mathrm{GL}(2,q)$ is lower-triangular.
- We distinguish two cases: when $A \in GL(2, q)$ has one eigenvalue and when A has two eigenvalues.
- The conditions, whether a certain coefficient of some $F \in \mathbb{I}_n^A$ can or cannot take any value in \mathbb{F}_q are provided.
- For the former case we prove sufficient conditions for the existence of polynomials of \mathbb{I}_n^A that indeed have these coefficients.

If A has one eigenvalue, then

$$[A] = \begin{cases} \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right], & \text{or} \\ \left[\begin{pmatrix} 1 & 0 \\ \alpha & 1 \end{pmatrix} \right], & \text{for some } \alpha \in \mathbb{F}_q^*. \end{cases}$$

The first situation is already settled. For the second case, we have that that $A \circ F \sim_q F \iff F(X) \sim_q F(X + \alpha) \iff F(X) = F(X + \alpha)$. The polynomials with this property are called periodic. We prove that the following characterizes those polynomials explicitly.

Lemma

Let $\alpha \in \mathbb{F}_q^*$. Some $F \in \mathbb{F}_q[X]$ satisfies $F(X) = F(X + \alpha)$ if and only if there exist some $G \in \mathbb{F}_q[X]$ such that $F(X) = G(X^p - \alpha^{p-1}X)$.

It is now clear that we need the following theorem.

Theorem (Agou, 1977)

Let q be a power of the prime $p, \alpha \in \mathbb{F}_q$ and $P \in \mathbb{I}_n$. The composition $P(X^p - \alpha^{p-1}X)$ is irreducible if and only if $\operatorname{Tr}(p_{n-1}/\alpha^p) \neq 0$, where Tr stands for the trace function $\mathbb{F}_q \to \mathbb{F}_p$.

So, the monic irreducible periodic polynomials are those of the form $Q(X) = P(X^p - \alpha^{p-1}X)$, for some $P \in \mathbb{I}_n$ such that $\operatorname{Tr}(p_{n-1}/\alpha^p) \neq 0$. So, the *m*-th coefficient of Q, where $0 \leq m \leq pn$, is

$$q_m = \sum_{\substack{\max(0, n-m) \le i \le n - \lceil m/p \rceil \\ i \equiv m-n \pmod{(p-1)}}} \gamma_i p_i^R,$$

that is a linear expression of some of the $\mu + 1$ low-degree coefficients of the reciprocal of *P*, where μ is the largest number such that $\gamma_{\mu} \neq 0$.

Regarding μ , observe that

- **1** it is possible for such μ to not exist (for example when m = np 1 and p > 2) and
- **2** if $\mu = 0$ or 1, then the value of q_m has to be a given combination of p_0^R and p_1^R , but since neither of them is chosen arbitrarily, it can only take certain values.
- So, from now on we assume that μ exists and $\mu \geq 2$.

11 / 26

We define to the following map

$$\sigma: \mathbb{G}_{\mu} \to \mathbb{F}_{q}, \quad H \mapsto \sum_{\substack{\max(0, n-m) \le i \le \mu \\ i \equiv m-n \pmod{(p-1)}}} \gamma_{i} h_{i},$$

where $\mathbb{G}_{\mu} := \{f \in \mathbb{F}_q[X] \mid \deg(f) \leq \mu, f_0 = 1\}$. We will need to correlate the inverse image of σ with a set that is easier to handle. The following, serves that purpose.

Proposition (Garefalakis-Kapetanakis, 2012)

Let
$$\kappa \in \mathbb{F}_q$$
. Set $F \in \mathbb{G}_{\mu}$ with $f_i := \gamma_{i-1} \gamma_{\mu}^{-1}$ for $0 < i < \mu$ and $f_{\mu} := \gamma_{\mu}^{-1} (\gamma_0 - \kappa)$. The map

$$\tau : \mathbb{G}_{\mu-1} \to \sigma^{-1}(\kappa), \quad H \mapsto HF^{-1} \pmod{X^{\mu+1}}$$

is a bijection.

Freimiliaries

The following summarizes our observations.

Proposition

Let $\kappa \in \mathbb{F}_q$ and $0 \le m \le (p-1)n$. If m, n and p are such that there exist some i with $\lceil m/p \rceil \le i \le \min(m, n-1)$ and $i \equiv m \pmod{(p-1)}$ and there exists some $P \in \mathbb{J}_n$ such that $\operatorname{Tr}(p_1/\alpha^{p-1}) \ne 0$ such that $P \equiv HF^{-1}$ $\pmod{X^{\mu+1}}$ for some $H \in \mathbb{G}_{\mu-1}$, then there exists some $Q \in \mathbb{I}_{pn}$, such that $Q(X) = Q(X + \alpha)$ and $q_m = \kappa$. We define the following weighted sum

$$w := \sum_{H \in \mathbb{G}_{\mu-1}} \Lambda(H) \sum_{\substack{P \in \mathbb{J}_n, \ \psi(P) \neq 1\\P \equiv HF^{-1} \pmod{X^{\mu+1}}}} 1,$$

where F is the polynomial defined earlier and Λ is the von Mangoldt function. Clearly, if $w \neq 0$ we have our desired result.

- Let M be a polynomial of \mathbb{F}_q of degree ≥ 1 . The characters of the group $(\mathbb{F}_q[X]/M\mathbb{F}_q[X])^*$ are called Dirichlet characters modulo M.
- Let $U := (\mathbb{F}_q[X]/X^{\mu+1}\mathbb{F}_q[X])^*$. Furthermore, set

 $\psi: U \to \mathbb{C}^*, \quad F \mapsto \exp(2\pi i \operatorname{Tr}(f_1/(f_0 \alpha^p))/p)$

and notice that for $P \in \mathbb{J}_n$ (where $P \in \mathbb{J}_n \iff P^R \in \mathbb{I}_n$), $\operatorname{Tr}(p_1/\alpha^p) = 0 \iff \psi(P) \neq 1$.

• Notice that ψ is also a Dirichlet character modulo $X^{\mu+1}$, while it is clear that $\operatorname{ord}(\psi) = p$.

Proposition

Let χ and ψ be Dirichlet characters modulo M, such that $\operatorname{ord}(\psi) = p$ and $\chi(\mathbb{F}_a^*) = 1.$ 1 If $\chi \notin \langle \psi \rangle$, then $\left| \sum_{\substack{P \in \mathbb{I}_n \\ \psi(P) \neq 1}} \chi(P) \right| \leq \frac{2(p-1)}{pn} \cdot (\deg(M)q^{n/2} + 1),$ 2 If $\chi \in \langle \psi \rangle^*$, then $\left| \sum_{\substack{P \in \mathbb{I}_n \\ \psi(P) \neq 1}} \chi(P) \right| \leq \frac{\pi_q(n)}{p} + \frac{2p-3}{pn} \cdot (\deg(M)q^{n/2} + 1).$ $\textbf{3} \ \textit{If } \chi = \chi_0, \textit{then} \left| \sum_{\substack{P \in \mathbb{I}_n \\ \psi(P) \neq 1}} \chi(P) \right| \geq \frac{(p-1)\pi_q(n)}{p} - \frac{p-1}{pn} \cdot (\deg(M)q^{n/2} + 1),$ Where $\pi_q(n)$ stands for the number of monic irreducible polynomials of degree *n* over \mathbb{F}_{a} .

By adjusting Wan's approach to our case, we prove that a sufficient condition for our desire result is

$$\begin{split} q^{n/2}(q^{(\mu-1)/2}-4\mu) + \frac{4\mu}{q-1} \geq \\ & 2\mu q^{\mu} \left(4\mu + \frac{1}{2q^{\mu/2}} + \frac{4\mu}{q^{\mu}} + \frac{1}{2\mu q^{(\mu+1)/2}(q-1)}\right). \end{split}$$

The above is satisfied for $q \ge 67$ for all $2 \le \mu \le n/2$. It is also satisfied for $n \geq 26$ for all q and $2 \leq \mu \leq n/2$.

Theorem

Let $[A] = [\begin{pmatrix} 1 & 0 \\ \alpha & 1 \end{pmatrix}] \in PGL(2, q), n' \in \mathbb{Z} \text{ and } \alpha \neq 0, \text{ then } \mathbb{I}_{n'} = \emptyset \iff p \nmid n'.$ Suppose n' = pn, fix $0 \leq m \leq pn$ and for $\max(0, n - m) \leq i \leq n - \lceil m/p \rceil$ set

$$\gamma_i := \begin{cases} \binom{n-i}{\frac{m-n+i}{p-1}} (-\alpha)^{p-n+i}, & \text{if } i \equiv m-n \pmod{(p-1)} \\ 0, & \text{otherwise} \end{cases}$$

and let μ be the maximum *i* such that $\gamma_i \neq 0$. In particular, $\mu \leq n - \lceil m/p \rceil$.

1 If μ does not exist, then $p_m = 0$ for all $P \in \mathbb{I}_{n'}^A$.

2 If
$$\mu = 0$$
, then $p_m = \gamma_0$ for all $P \in \mathbb{I}_{n'}^A$.

- If μ = 1, then for all P ∈ I^A_{n'}, we have that p_m = γ₀ + γ₁κ for some κ ∈ F_q with Tr(κ/α^p) ≠ 0. Conversely, there exists some P ∈ I^A_{n'} such that p_m = γ₀ + γ₁κ for all κ ∈ F_q with Tr(κ/α^p) ≠ 0.
- If 2 ≤ μ ≤ n/2, there exists some P ∈ I^A_{n'} such that p_m = κ for all κ ∈ F_q, given that q ≥ 65 or n ≥ 26.

If A has two distinct eigenvalues, then $[A] \sim [B]$, where $B = \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}$ for some $\alpha \in \mathbb{F}_q^*$. It is clear that $F \in \mathbb{F}_q[X]$ satisfies $B \circ F \sim_a F \iff F(X) \sim_a F(\alpha X)$. First, we prove.

Lemma

Let α be an element of \mathbb{F}_{q}^{*} of multiplicative order r. A polynomial $F \in \mathbb{F}_{q}[X]$ satisfies $F(X) \sim_a F(\alpha X)$ if and only if there exists some $G \in \mathbb{F}_q[X]$ and $k \in \mathbb{Z}_{\geq 0}$ such that $F(X) = X^k G(X^r)$.

It is clear now that the elements of $\mathbb{I}_{n'}^B$ should be of the form $P(X^r)$, for some $P \in \mathbb{I}_n$. The below characterizes the irreducibility of such compositions.

Theorem (Cohen, 1969)

Let $P \in \mathbb{I}_n$ and r be such that gcd(r, q) = 1, the square-free part of r divides q-1 and $4 \nmid \gcd(r, q^n+1)$, then $P(X^r)$ is irreducible if and only if gcd(r, (q-1)/e) = 1, where e is the order of $(-1)^n p_0$.

- The irreducibility of $P(X^r)$ depends solely on the choice of p_0 .
- It is known that we have exactly $\phi(r)(q-1)/r$ choices for p_0 . We denote this set by \mathfrak{C} , while the primitive elements of \mathbb{F}_q are in \mathfrak{C} .
- Notice that we already have enough to prescribe the coefficients of the polynomials in I^B_{n'}.

Our next step is to move to the case of arbitrary A.

The lemma below provides a correlation between $\mathbb{I}_{n'}^C$ and $\mathbb{I}_{n'}^D$, if $[C] \sim [D]$.

Lemma

Suppose that $[C], [D] \in PGL(2, q)$ such that $[C] \sim [D]$, then map

$$\phi \ : \ (\mathbb{I}^C_{n'}/\sim_q) \to (\mathbb{I}^D_{n'}/\sim_q), \ [F] \mapsto [U \circ F],$$

where $U \in GL(2, q)$ is such that $[D] = [UCU^{-1}]$, is a bijection.

Before proceeding, we observe that the above combined with what we already know about $\mathbb{I}_{n'}^B$ imply that $\mathbb{I}_{n'}^A \neq \emptyset \iff r \mid n'$, so from now on we assume that n' = rn. Moreover, by utilizing the above bijection, given that $[A] \sim [B]$, we can write any coefficient of $Q \in \mathbb{I}_{n'}^A$, as a linear expression of the coefficients of some $P' \in \mathbb{I}_{n'}^B$. In particular, since both A and B are lower-triangular, there exists some $U = \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \in \mathrm{GL}(2, q)$ such that $Q = U \circ P'$.

It follows that the m-th coefficient of Q is

$$q_m = \sum_{i=0}^{n - \lceil m/r \rceil} \delta_i p_{n-i},$$

i.e. a linear expression of the high-degree coefficients of P, where P is such that $P'(X) = P^R(X^r)$. Further, we define μ as the largest i such that $\delta_i \neq 0$ and $r \mid i$. If such μ does not exist, then $q_m = 0$. If $\mu = 0$, then $q_m = \delta_0 \mathfrak{c}$ for any $\mathfrak{c} \in \mathfrak{C}$. So, from now we assume that $\mu \geq 1$.

With the latter in mind, we fix some $\mathfrak{c} \in \mathfrak{C}$ and seek irreducible polynomials of degree n with $p_0 = \mathfrak{c}$ that satisfy $\sum_{i=0}^{\mu} \delta_i p_i = \mathfrak{c}\kappa$ for some $\kappa \in \mathbb{F}_q$. Next, we fix $\sigma : \mathbb{G}_{\mu} \to \mathbb{F}_q$, $H \mapsto \sum_{i=0}^{\mu} \delta_i h_i$ and set

$$w := \sum_{H \in \mathbb{G}_{\mu-1}} \Lambda(H) \sum_{\substack{P \equiv \mathfrak{c} HF_{\mathfrak{c}}^{-1} \pmod{X^{\mu+1}}}} 1.$$

It is now clear that if $w \neq 0$, then there exists some $P \in \mathbb{I}_n$ with $p_0 \in \mathfrak{C}$ that satisfies $\sum_{i=0}^{\mu} \delta_i p_i = \kappa \mathfrak{c}$, which in turn implies the existence of some $Q \in \mathbb{I}_{n'}^A$ with $q_m = \kappa$.

• Working as before, we get the following condition.

$$q^{n/2} \ge 2n(\mu+1)q^{(\mu+1)/2} + \frac{q}{q+1}.$$

- This is satisfied for all $1 \le \mu \le n/2$ for $n \ge 5$ and $q \ge 31$ and for $n \ge 47$ and arbitrary q.

Theorem

Let $[A] \in PGL(2, q)$ be such that $[A] \sim [(\begin{smallmatrix} \alpha & 0 \\ 0 & 1 \end{smallmatrix})]$ for some $\alpha \in \mathbb{F}_q$ of order r > 1 and $0 \le m \le n'$. First, $\mathbb{I}_{n'}^A \ne \emptyset \iff r \mid n'$, so assume n' = rn. Further, set $\mathfrak{C} := \{x \in \mathbb{F}_q \mid \gcd(r, (q-1)/\operatorname{ord}(x)) = 1\}$. If $[A] = [(\begin{smallmatrix} \alpha & 0 \\ 0 & 1 \end{smallmatrix})]$, then for any $P \in \mathbb{I}^A_{n'}$, $p_i = 0$ for all $r \nmid m$ and $p_0 \in \mathfrak{C}$, while for any $\kappa \in \mathbb{F}_q$ there exists some $P \in \mathbb{I}_{n'}^A$ with $p_m = \kappa$ for any $m \neq 0, r \mid m$, while the same holds for m = 0 and $\kappa \in \mathfrak{C}$. If $[A] \neq [\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}]$, compute $a, c, d \in \mathbb{F}_{a}$ such that $[A] = [UBU^{-1}]$, where $B = \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}$ and $U = \begin{pmatrix} a & 0 \\ c & d \end{pmatrix}$ and for $0 \leq i \leq n - \lceil m/r \rceil$, set $\delta_i := \binom{(n-i)r}{m} a^m c^{(n-i)r-m} d^{ir}$. Let $\mu := \max\{j : \delta_i \neq 0\}$. In particular $\mu \le n - \lceil m/r \rceil$. **1** If μ does not exist, then $p_m = 0$ for all $P \in \mathbb{I}_n^A$.

If μ = 0, then for all P∈ I^A_{n'}, we have that p_m = δ₀c for some c ∈ C. Conversely, there exists some P∈ I^A_{n'} with p_m = δ₀c for all c∈ C.

3 If $0 < \mu < n/2$ then there exists some $P \in \mathbb{I}_{n'}^A$ with $p_m = \kappa$ for all $\kappa \in \mathbb{F}_q$, given that $n \ge 5$ and $q \ge 31$ or $n \ge 47$.

Thank You!