VARIATIONS OF THE PRIMITIVE NORMAL BASIS THEOREM

Giorgos Kapetanakis Joint work with Lucas Reis Antalya Algebra Days XX - May 2018

Sabancı University Supported by TÜBİTAK Project No. 114F432

MOTIVATION

Definitions

- Let \mathbf{F}_q be the finite field of q elements, where q is a power of the prime p and let $n \ge 1$.
- $\mathbf{F}_{q^n}^*$ is cyclic and any generator of this group is called primitive.
- \mathbf{F}_{q^n} is an \mathbf{F}_q -vector space of dimension n and $\alpha \in \mathbf{F}_{q^n}$ is normal over \mathbf{F}_q if $\mathcal{B} = \{\alpha, \dots, \alpha^{q^{n-1}}\}$ is an \mathbf{F}_q -basis of \mathbf{F}_{q^n} and \mathcal{B} is a normal basis
- The Primitive Normal Basis Theorem states that there exists a normal basis composed by primitive elements in any finite field extension.
- Lenstra and Schoof (1987) proved this, while Cohen and Huczynska (2003) gave a computer-free proof.

A variation of normal elements was recently introduced by Huczynska et al. (2013).

Definition

For $\alpha \in \mathbf{F}_{q^n}$, consider the set $S_{\alpha} = \{\alpha, \alpha^q, \dots, \alpha^{q^{n-1}}\}$. Then α is *k*-normal over \mathbf{F}_q if the \mathbf{F}_q -vector space $V_{\alpha} = \langle S_{\alpha} \rangle$ has co-dimension *k*.

 Following this definition, 0-normal elements are the usual normal elements and 0 ∈ F_{qⁿ} is the only *n*-normal element.

Additive order of elements

- For $f \in \mathbf{F}_q[x]$, $f = \sum_{i=0}^{s} a_i x^i$ and $\alpha \in \mathbf{F}_{q^n}$, define $f \circ \alpha = \sum_{i=0}^{s} a_i \alpha^{q^i}$.
- For α ∈ F_{qⁿ}, set I_α := {g ∈ F_q[x] | g ∘ α = 0}, a non-zero ideal of F_q[x]. Denote by m_α its unique monic generator and call it F_q-order of α.

• For
$$\alpha \in \mathbf{F}_{q^n}$$
, $m_{\alpha}(x) \mid x^n - 1$.

There is a connection between k-normal elements and their \mathbf{F}_q -order.

Proposition (Huczynska-Mullen-Panario-Thomson)

Let $\alpha \in \mathbf{F}_{q^n}$. Then α is k-normal if and only if $m_{\alpha}(x)$ has degree n - k.

Previous work on *k*-normal elements

- Reis has several results about *k*-normal elements.
- Alizadeh (2017) characterized k-normal elements and gave a recursive construction of 1-normal polynomials.
- Tilenbaev, Saygı and Ürtiş (2017) gave a formula for the number of *k*-normal elements.
- Reis and Thomson (2018) proved the existence of primitive 1-normal elements of F_{qⁿ} over F_q, for odd q and n ≥ 3.

Definition

Let $r \mid q^n - 1$. Some $\alpha \in \mathbf{F}_{q^n}^*$ is *r*-primitive if $\operatorname{ord}(\alpha) = \frac{q^n - 1}{r}$, where $\operatorname{ord}(\alpha)$ stands for the multiplicative order of α .

- The 1-primitive elements correspond to the primitive elements in the usual sense.
- For every $r \mid q^n 1$, there exist exactly $\varphi(r)$ *r*-primitive elements.

Motivated by the Primitive Normal Basis Theorem, Anderson and Mullen (2014) propose the following.

Conjecture (Anderson-Mullen)

Suppose $p \ge 5$ is a prime and $n \ge 3$. Then for a = 1, 2 and k = 0, 1 there exists some k-normal element $\alpha \in \mathbf{F}_{p^n}$ with multiplicative order $(p^n - 1)/a$.

- The case (a, k) = (1, 0) is the Primitive Normal Basis Theorem and the case (a, k) = (1, 1) was recently proved by Reis and Thomson (2018).
- In this work, we complete the proof and also consider the missing cases *p* = 3 and *n* = 2.

PRELIMINARIES

Freeness

Definition

- 1. If *m* divides $q^n 1$, an element $\alpha \in \mathbf{F}_{q^n}^*$ is *m*-free if $\alpha = \beta^d$ for any divisor *d* of *m* implies d = 1.
- 2. If $m \in \mathbf{F}_q[x]$ divides $x^n 1$, an element $\alpha \in \mathbf{F}_{q^n}$ is *m*-free if $\alpha = h \circ \beta$ for any divisor *h* of *m* implies h = 1.
 - Primitive elements correspond to the $(q^n 1)$ -free elements.
 - Normal elements correspond to the $(x^n 1)$ -free elements.

Characterizing 1-normal elements

Proposition

Let q be a power of a prime p and $n = p^k u$, where $k \ge 0$ and gcd(u, p) = 1. Write $T(x) = \frac{x^u - 1}{x - 1}$. Then $\alpha \in \mathbf{F}_{q^n}$ is such that $m_{\alpha}(x) = \frac{x^n - 1}{x - 1}$ if and only if α is T(x)-free and $\operatorname{Tr}_{q^n/q^{p^k}}(\alpha) = \beta$, where β is such that $m_{\beta}(x) = \frac{x^{p^k} - 1}{x - 1}$.

In the case when $p^2 \mid n$, we have an alternative characterization for such 1-normal elements.

Proposition

Suppose that $n = p^2 s$ and let $\alpha \in \mathbf{F}_{q^n}$ such that $\operatorname{Tr}_{q^n/q^{ps}}(\alpha) = \beta$. Then $m_{\alpha} = \frac{x^n - 1}{x - 1}$ if and only if $m_{\beta} = \frac{x^{ps} - 1}{x - 1}$.

We are interested in the characteristic functions of the properties. Vinogradov's formula is an expression of the above that involves characters.

1. For $w \in \mathbf{F}_{q^n}^*$ and t be a positive divisor of $q^n - 1$,

$$\omega_t(w) = \theta(t) \sum_{d|t} \frac{\mu(t)}{\varphi(t)} \sum_{\text{ord } \chi = t} \chi(w) = \begin{cases} 1, & \text{if } w \text{ is } t \text{-free,} \\ 0, & \text{otherwise.} \end{cases}$$

2. For $w \in \mathbf{F}_{q^n}$ and D be a monic divisor of $x^n - 1$,

$$\Omega_D(w) = \Theta(D) \sum_{E|D} \frac{\mu(D)}{\varphi(D)} \sum_{\text{ord } \psi = D} \psi(w) = \begin{cases} 1, & \text{if } w \text{ is } D\text{-free,} \\ 0, & \text{otherwise.} \end{cases}$$

For any divisor m of n, \mathbf{F}_{q^m} is a subfield of \mathbf{F}_{q^n} . Let

$$T_{m,\beta}(w) = egin{cases} 1, & ext{if } \operatorname{Tr}_{q^n/q^m}(w) = eta, \ 0, & ext{otherwise.} \end{cases}$$

We need a character sum formula for $T_{m,\beta}$. The orthogonality relations yield:

$$T_{m,\beta}(w) = \frac{1}{q^m} \sum_{\psi \in \widehat{\mathbf{F}_{q^m}}} \widetilde{\psi}(w) \overline{\psi}(\beta),$$

where $\widetilde{\psi}(w) = \psi(\operatorname{Tr}_{q^n/q^m}(w))$ is the lift of ψ and $\overline{\psi}$ is the inverse of ψ .

SUFFICIENT CONDITIONS

1. Let $\mathcal{N}(r, f, m, \beta)$ be the number of primitive elements $w \in \mathbf{F}_{q^n}$ such that w^r is *f*-free and $\operatorname{Tr}_{q^n/q^m}(w^r) = \beta$. Then

$$\mathcal{N}(r, f, m, \beta) = \sum_{w \in \mathbf{F}_{q^n}} \Omega_f(w^r) T_{m, \beta}(w^r) \omega_{q^n - 1}(w).$$

2. Let $\mathcal{N}(r)$ be the number of primitive elements $w \in \mathbf{F}_{q^n}$ such that w^r is normal. Then

$$\mathcal{N}(r) = \sum_{w \in \mathbf{F}_{q^n}} \Omega_{x^n - 1}(w^r) \omega_{q^n - 1}(w).$$

Let W(t) be the number of square-free factors of t. By using exponential sums, we prove the following:

Proposition

- Write $n = p^t u$, where gcd(u, p) = 1 and $t \ge 0$.
- (a) If $q^{p^t(u/2-1)} > W(q^n 1)W(x^u 1)$ there exist 2-primitive, 1-normal elements in \mathbf{F}_{q^n} .
- (b) If $q^{n/2} > 2W(q^n 1)W(x^u 1)$ there exist 2-primitive, normal elements in \mathbf{F}_{q^n} .
- (c) If $t \geq 1$, $q^{n/2-n/p} > 2W(q^n 1)$ and $\beta \in \mathbf{F}_{q^{n/p}}$, there exists a 2-primitive element $\alpha \in \mathbf{F}_{q^n}$, with $\operatorname{Tr}_{q^n/q^{n/p}}(\alpha) = \beta$.

Remark

The first inequality of the last proposition is always false for n = p, 2p. For these cases, we employ a refinement of our main result, using simple combinatorial arguments.

INEQUALITY CHECKING METHODS

Lemma

Let t, a be positive integers and let p_1, \ldots, p_j be the distinct prime divisors of t such that $p_i \le 2^a$. Then $W(t) \le c_{t,a} t^{1/a}$, where

$$c_{t,a}=\frac{2^j}{(p_1\cdots p_j)^{1/a}}.$$

In particular, for $c_t:=c_{t,4}$ and $d_t:=c_{t,8}$ we have the bounds $c_t<4.9$ and $d_t<4514.7$ for every positive integer t.

Lemma (Lenstra-Schoof)

For every positive integer n, $W(x^n - 1) \le 2^{(\gcd(n,q-1)+n)/2}$. Additionally, the bound $W(x^n - 1) \le 2^{s(n)}$ holds in the following cases:

1.
$$s(n) = \frac{\min\{n,q-1\}+n}{2}$$
 for every q ,
2. $s(n) = \frac{n+4}{3}$ for $q = 3$ and $u \neq 4, 8, 16$,
3. $s(n) = \frac{n}{3} + 6$ for $q = 5$.

Next, we explore the pairs (q, n) satisfying the above inequalities. Our method is based on two main steps.

- **Step 1.** Use the bounds for $W(q^n 1)$ and $W(x^u 1)$. After this point, only a finite number of pairs (q, n) does not satisfy the inequalities.
- **Step 2.** Check the inequalities by direct computations. After this step, the remaining pairs that do not satisfy the inequalities have small *q* and *n*.

For all our computations, the SAGEMATH software was used.

For this case, the condition is

$$q^{n/2} > 2W(q^n - 1)W(x^n - 1).$$

We prove it to hold for all but 68 pairs (q, n), where q is any odd prime power and $n \ge 3$.

This case is useful for the 2-primitive, 1-normal case, when $p^2 \mid n$. The resulting inequality to check is

$$q^{n_0(p^2/2-p)} > 2W(q^{p^2n_0}-1),$$

where $n = p^2 n_0$. This is true for all but 6 pairs (q, n), where q is any power of some odd prime p and $p^2 | n$.

2-primitive, 1-normal elements

Write $n = p^t \cdot u$ with gcd(p, u) = 1. We are interested in the cases t < 2. The resulting inequality is

$$q^{p^t(u/2-1)} > W(q^n-1)W(x^u-1).$$

We consider the cases:

- 1. t = 0: We prove the above inequality for all but 483 pairs (q, n), where q may be any odd prime power and $n \ge 4$.
- 2. $t = 1, u \ge 3$: We prove the validity of the inequality for all but 7 pairs (q, n).
- 3. n = p, 2p: We prove the existence of 2-primitive, 1-normal elements, with the exception of 3 pairs (q, n), where $p \neq 5$ if n = p.

COMPLETION OF THE PROOFS

The proof of the following is elementary.

Lemma

If q > 3 is an odd prime power, then all 2-primitive $c \in F_{q^2}$ are normal over F_q . In contrast, all 2-primitive elements of F_{3^2} are 1-normal over F_3 .

Based on Cohen's (1990) results about primitive elements with prescribed trace, we prove the following.

Proposition

Let q be a power of an odd prime. Then there exists a 2-primitive, 1-normal element in \mathbf{F}_{q^3} over \mathbf{F}_q .

Next, we write a script that verifies the pairs (q, n) that were not dealt with theoretically. This completes our proof.

Theorem

Let q be a power of an odd prime p and $n \ge 2$.

- There exists some α ∈ F_{qⁿ} that is simultaneously 2-primitive and normal over F_q, unless (q, n) = (3,2), (3,4).
- 2. If $n \ge 3$, there exists some $\alpha \in \mathbf{F}_{q^n}$ that is simultaneously 2-primitive and 1-normal over \mathbf{F}_q . Such an element exists also in the case (q, n) = (3, 2) and it does not exist when n = 2 and q > 3.

- Following our proof, all 2-primitive, 1-normal elements that we theoretically proved to exist when n ≥ 3, are zero-traced over F_q.
- For the remaining pairs (q, n), we verify by computer the existence of zero-traced 2-primitive, 1-normal of F_{qⁿ} over F_q. So we have proved the following.

Theorem

Let q be a power of an odd prime and let $n \ge 3$ be a positive integer. Then there exists a 2-primitive, 1-normal element $\alpha \in \mathbf{F}_{q^n}$ such that $\mathrm{Tr}_{q^n/q}(\alpha) = 0$.

This work is available at: arXiv:1712.09861 [math.NT]

Thank You!