PRESCRIBING COEFFICIENTS OF INVARIANT IRREDUCIBLE POLYOMIALS

Giorgos Kapetanakis Boğaziçi University Mathematics Colloquium, November 2017

Sabancı University Supported by TÜBİTAK Project Number 114F432 Where you can find this work:

G. Kapetanakis. Prescribing coefficients of invariant irreducible polynomials. Journal of Number Theory, 180(C):615–628, 2017.

MOTIVATION

Some definitions

• By \mathbf{F}_q we denote the finite field of q elements. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, q)$ and $F \in \mathbf{F}_q[X]$. Define

$$A \circ F = (bX + d)^{\deg(F)} F\left(\frac{aX + c}{bX + d}\right).$$

This defines an action of GL(2, q) on $F_q[X]$.

• For $A, B \in GL(2, q)$ and $F, G \in \mathbf{F}_q[X]$, define

$$A \sim_q B : \iff A = \lambda B, \text{ for some } \lambda \in \mathbf{F}_q^* \text{ and}$$
$$F \sim_q G : \iff F = \lambda G, \text{ for some } \lambda \in \mathbf{F}_q^*$$

• This action induces an action of PGL(2, q) on $\mathbf{F}_q[X]/\sim_q$.

Some definitions

For F ∈ F_q[X], the equivalence class
 [F] := {G ∈ F_q[X] | G ~_q F} consists of polynomials of the same degree with F that are all either irreducible or reducible and every such class contains exactly one monic polynomial.

- Let $I_n := \{[P] \mid P \in F_q[X] \text{ irreducible, } \deg(P) = n\}$. It is well-known that the action of PGL(2, q) we saw before induces an action of PGL(2, q) on I_n .
- For $A \in GL(2, q)$ and $n \in N$, we define

$$\mathbf{I}_n^{\mathsf{A}} := \{ [\mathbf{P}] \in \mathbf{I}_n \mid [\mathbf{A} \circ \mathbf{P}] = [\mathbf{P}] \}.$$

The study of the set I_n^A

Recently, the set I_n^A has started gaining attention. Namely, authors have studied

- its cardinality and characterization (Garefalakis 2010, Reis 2017, Stichtenoth and Topuzoğlu 2011) and
- the multiplicative order of the roots of its elements (Martínez et al. 2017),
- while extending these notions to multivariate polynomials has also been investigated (Reis 2017).

Nonetheless, the form (i.e. how these polynomials look) of the elements of I_n^A (for general A) so far remains to be investigated.

An example

As an example, take $R = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and some $F \in \mathbf{F}_q[X]$. Then $R \circ F = X^{\deg(F)}F(1/X),$

i.e. the reciprocal of F and I_n^R is the set of self-reciprocal irreducible polynomials. A result regarding these polynomials is the following

Theorem (Garefalakis-K., 2012-2014)

Let q be odd, $a \in \mathbf{F}_q$ and n, k be such that $k \le n/2$. There exists some $F = X^{2n} + \sum_{i=0}^{2n-1} f_i X^i \in \mathbf{I}_{2n}^R$ with $f_k = a$, unless (q, n, k, a) = (3, 3, 1, 0) or (3, 4, 2, 0).

Can we say anything about the coefficients of the polynomials of I_n^A for arbitrary A?

Below, we present the results of a quick experiment regarding the set I_6^A , where A is chosen to be $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$, $\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$ and $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ and q = 3.

$A = \left(\begin{smallmatrix} 1 & 0 \\ 2 & 1 \end{smallmatrix}\right)$	$A = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$	$A = \left(\begin{smallmatrix} 2 & 0 \\ 0 & 1 \end{smallmatrix}\right)$
$X^6 + X^4 + X^3 + X^2 + 2X + 2$	$X^{6} + 2X^{3} + 2X^{2} + X + 1$	$X^{6} + 2X^{2} + 1$
$X^{6} + X^{4} + 2X^{3} + X^{2} + X + 2$	$X^{6} + X^{4} + 2X^{2} + 2X + 2$	$X^{6} + X^{4} + 2X^{2} + 1$
	$X^{6} + 2X^{4} + X^{3} + 2X + 1$	$X^{6} + 2X^{4} + 1$
	$X^{6} + 2X^{4} + X^{3} + X^{2} + X + 2$	$X^{6} + 2X^{4} + X^{2} + 1$

The most famous result as far as prescribing coefficients of irreducible polynomials over finite fields is concerned, is the following:

Theorem (Hansen-Mullen irreducibility conjecture) Let $a \in \mathbf{F}_q$, $n \ge 2$ and fix $0 \le j < n$. There exists an irreducible $P(X) = X^n + \sum_{k=0}^{n-1} p_k X^k \in \mathbf{F}_q[X]$ with $p_j = a$, except when 1. j = a = 0 or 2. q is even, n = 2, j = 1, and a = 0.

Prescribed coefficients of irreducible polynomials

- Initially conjectured by Hansen and Mullen 1992.
- Proved for q > 19 or $n \ge 36$ by Wan 1997.
- Ham and Mullen 1998 verified the remaining cases by computer search.
- Several extensions have been obtained (i.e. Garefalakis 2008, Panario and Tzanakis 2011)
- While most authors use a variation of Wan's approach, Recently new methods have emerged (Ha 2016, Pollack 2013, Tuxanidy and Wang 2017, Granger 2017).

Results from Fan and Han 2003-2004, Cohen 2006 and Cohen and Prešern 2006-2008 settled the Hansen-Mullen primitivity conjecture, which claimed the existence of primitive polynomials over \mathbf{F}_q with prescribed coefficients, only this time with a few additional exceptions. In this work:

- We confine ourselves to the case when A ∈ GL(2, q) is lower-triangular.
- We distinguish two cases: when A ∈ GL(2, q) has one eigenvalue and when A has two eigenvalues.
- The conditions, whether a certain coefficient of some $F \in \mathbf{I}_n^A$ can or cannot take any value in \mathbf{F}_q are provided.
- For the former case we provide sufficient conditions for the existence of polynomials of I^A_n that indeed have these coefficients.

Outline of our method

- 1. We characterize the elements of I_n^A in two steps:
 - a. find $H \in \mathbf{F}_q[X]$ such that $A \circ Q \sim_q Q \iff Q(X) = P(H(X))$ for some $P \in \mathbf{F}_q[X]$ and
 - b. then look when this composition is irreducible.
- We write the arbitrary coefficient of Q as a linear combination of the high-degree coefficients of P, i.e. the low-degree coefficients of P^R, the reciprocal of P
- 3. We prove the existence of P^R , such that its low-degree coefficients satisfy the above linear expression and such that the composition P(H(X)) is irreducible, with the help of Dirichlet characters (Wan's method).

ONE EIGENVALUE

If A has one eigenvalue, then

$$[A] = \begin{cases} \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right], & \text{or} \\ \left[\begin{pmatrix} 1 & 0 \\ \alpha & 1 \end{pmatrix} \right], & \text{for some } \alpha \in F_q^*. \end{cases}$$

The first situation is already settled. For the second case,

$$A \circ F \sim_q F \iff F(X) \sim_q F(X + \alpha) \iff F(X) = F(X + \alpha),$$

that is *F* is periodic. We prove the following characterization of those polynomials.

Lemma

Let $\alpha \in \mathbf{F}_q^*$. Some $F \in \mathbf{F}_q[X]$ satisfies $F(X) = F(X + \alpha)$ if and only if there exist some $G \in \mathbf{F}_q[X]$ such that $F(X) = G(X^p - \alpha^{p-1}X)$.

We will use following.

Theorem (Agou, 1977)

Let q be a power of the prime p, $\alpha \in \mathbf{F}_q$ and $P \in \mathbf{I}_n$. The composition $P(X^p - \alpha^{p-1}X)$ is irreducible if and only if $Tr(p_{n-1}/\alpha^p) \neq 0$, where Tr stands for the trace function $\mathbf{F}_q \rightarrow \mathbf{F}_p$.

So, the monic irreducible periodic polynomials are those of the form $Q(X) = P(X^p - \alpha^{p-1}X)$, for some $P \in I_n$ such that $Tr(p_{n-1}/\alpha^p) \neq 0$.

So, the *m*-th coefficient of *Q*, where $0 \le m \le pn$, is

$$q_m = \sum_{\substack{\max(0,n-m) \le i \le n - \lceil m/p \rceil \\ i \equiv m-n \pmod{(p-1)}}} \gamma_i p_i^R,$$

that is a linear expression of some of the μ + 1 low-degree coefficients of the reciprocal of *P*, where μ is the largest number such that $\gamma_{\mu} \neq 0$.

Regarding μ , observe that

- 1. it is possible for such μ to not exist (for example when m = np 1 and p > 2) and
- 2. if $\mu = 0$ or 1, then the value of q_m has to be a given combination of p_0^R and p_1^R , but since neither of them is chosen arbitrarily, it can only take certain values.

So, from now on we assume that μ exists and $\mu \ge 2$.

Preliminaries

Define to the following map

$$\sigma: \mathbf{G}_{\mu} \to \mathbf{F}_{q}, \quad H \mapsto \sum_{\substack{\max(0, n-m) \le i \le \mu \\ i \equiv m-n \pmod{(p-1)}}} \gamma_{i} h_{i},$$

where $\mathbf{G}_{\mu} := \{f \in \mathbf{F}_q[X] \mid \deg(f) \leq \mu, f_0 = 1\}$. The following correlates the inverse image of σ with $\mathbf{G}_{\mu-1}$.

Proposition (Garefalakis-K., 2012)

Let $\kappa \in \mathbf{F}_q$. Set $F \in \mathbf{G}_{\mu}$ with $f_i := \gamma_{i-1}\gamma_{\mu}^{-1}$ for $0 < i < \mu$ and $f_{\mu} := \gamma_{\mu}^{-1}(\gamma_0 - \kappa)$. The map

$$au: \mathbf{G}_{\mu-1}
ightarrow \sigma^{-1}(\kappa), \quad H \mapsto HF^{-1} \pmod{X^{\mu+1}}$$

is a bijection.

The following summarizes our observations.

Proposition

Let $\kappa \in \mathbf{F}_q$ and $0 \le m \le (p-1)n$. If m, n and p are such that there exist some i with $\lceil m/p \rceil \le i \le \min(m, n-1)$ and $i \equiv m$ (mod (p-1)) and there exists some $P \in \mathbf{J}_n$ such that $\operatorname{Tr}(p_1/\alpha^{p-1}) \ne 0$ such that $P \equiv HF^{-1} \pmod{X^{\mu+1}}$ for some $H \in \mathbf{G}_{\mu-1}$, then there exists some $Q \in \mathbf{I}_{pn}$, such that $Q(X) = Q(X + \alpha)$ and $q_m = \kappa$. Let

$$\Lambda(H) := \begin{cases} \deg(P), & \text{if } H \text{ is a power of a single irreducible } P, \\ 0, & \text{otherwise,} \end{cases}$$

be the von Mangoldt function on $\mathbf{F}_q[X]$. We define the following weighted sum

$$W := \sum_{H \in \mathbf{G}_{\mu-1}} \Lambda(H) \sum_{\substack{P \in \mathbf{J}_n, \ \mathrm{Tr}(p_1/\alpha^{p-1}) \neq 0\\ P \equiv HF^{-1} \pmod{X^{\mu+1}}}} 1,$$

where F is the polynomial defined earlier. If $w \neq 0$, we have our desired result.

Characters and character sums

- Let *M* be a polynomial of \mathbf{F}_q of degree \geq 1. The characters of the group $(\mathbf{F}_q[X]/M\mathbf{F}_q[X])^*$ are called Dirichlet characters modulo *M*.
- Let $U := (\mathbf{F}_q[X]/X^{\mu+1}\mathbf{F}_q[X])^*$. Furthermore, set

 $\psi: U \to \mathbf{C}^*, \quad F \mapsto \exp(2\pi i \operatorname{Tr}(f_1/(f_0 \alpha^p))/p)$

and notice that for $P \in J_n$ (where $P \in J_n \iff P^R \in I_n$), $Tr(p_1/\alpha^p) \neq 0 \iff \psi(P) \neq 1$.

• Notice that ψ is also a Dirichlet character modulo $X^{\mu+1}$, while it is clear that $ord(\psi) = p$.

Weil's theorem of the Riemann hypothesis for function fields implies.

Proposition (Weil)

Let χ be a non-trivial Dirichlet character modulo M such that $\chi(F_{q^*})=1.$ Then

$$\left|\sum_{P\in\mathbf{I}_n}\chi(P)\right|\leq \frac{1}{n}(\deg(M)q^{n/2}+1).$$

Character sum estimates

Proposition

Let χ and ψ be Dirichlet characters modulo M, such that $ord(\psi) = p$ and $\chi(\mathbf{F}_q^*) = 1$.

1. If
$$\chi \notin \langle \psi \rangle$$
, $\left| \sum_{\substack{P \in I_n \\ \psi(P) \neq 1}} \chi(P) \right| \le \frac{2(p-1)}{pn} \cdot (\deg(M)q^{n/2} + 1)$,
2. If $\chi \in \langle \psi \rangle^*$, $\left| \sum_{\substack{P \in I_n \\ \psi(P) \neq 1}} \chi(P) \right| \le \frac{\pi_q(n)}{p} + \frac{2p-3}{pn} \cdot (\deg(M)q^{n/2} + 1)$.
3. If $\chi = \chi_0$, $\left| \sum_{\substack{P \in I_n \\ \psi(P) \neq 1}} \chi(P) \right| \ge \frac{(p-1)\pi_q(n)}{p} - \frac{p-1}{pn} \cdot (\deg(M)q^{n/2} + 1)$, where $\pi_q(n)$ stands for the number of monic irreducible polynomials of degree n over \mathbf{F}_q .

With the orthogonality relations in mind, we define $V := \{\chi \in \widehat{U} \mid \chi(\mathbf{F}_q^*) = 1\}$, check that V is a subgroup of \widehat{U} with $\psi \in V$ and then rewrite w as follows:

$$w = \frac{1}{|V|} \sum_{\chi \in V} \chi(F) \sum_{H \in \mathbf{G}_{\mu-1}} \Lambda(H) \bar{\chi}(H) \sum_{P \in \mathbf{J}_n, \ \psi(P) \neq 1} \chi(P).$$

We separate the term that corresponds to $\chi = \chi_0$ and call it A_{ψ} , then the one that corresponds to $\chi \in \langle \psi \rangle \setminus \{\chi_0\}$ and call it B_{ψ} and finally C_{ψ} will stand for the term that corresponds to $\chi \notin \langle \psi \rangle$. Hence $w = A_{\psi} + B_{\psi} + C_{\psi}$.

Using the character sum estimate we proved and some well-known results, we get:

- For C_{ψ} , we have $|C_{\psi}| \leq \frac{4\mu^2}{n} \cdot q^{(n+\mu-1)/2}$.
- For B_{ψ} we get $|B_{\psi}| \leq rac{2\mu}{q^{(\mu+1)/2}} \cdot \pi_q(n) + rac{4\mu^2}{n} \cdot q^{(n-\mu-1)/2}.$
- Finally, for A_{ψ} , we get $|A_{\psi}| \geq rac{1}{2q} \left(\pi_q(n) rac{\mu}{n} \cdot q^{n/2} \right)$.

Since $w = A_{\psi} + B_{\psi} + C_{\psi}$, it follows that $w \neq 0$ provided that $|A_{\psi}| > |B_{\psi}| + |C_{\psi}|$. This, combined with known lower bounds for $\pi_q(n)$ implies the following condition for w > 0:

$$egin{aligned} q^{n/2}(q^{(\mu-1)/2}-4\mu)+rac{4\mu}{q-1}\geq \ &2\mu q^{\mu}\left(4\mu+rac{1}{2q^{\mu/2}}+rac{4\mu}{q^{\mu}}+rac{1}{2\mu q^{(\mu+1)/2}(q-1)}
ight). \end{aligned}$$

The above is satisfied for $q \ge 67$ for all $2 \le \mu \le n/2$. It is also satisfied for $n \ge 26$ for all q and $2 \le \mu \le n/2$.

Theorem

Let $[A] = \left[\begin{pmatrix} 1 & 0 \\ \alpha & 1 \end{pmatrix} \right] \in PGL(2, q), n' \in \mathbb{Z} \text{ and } \alpha \neq 0$, then $\mathbf{I}_{n'}^A = \emptyset \iff p \nmid n'.$ Suppose n' = pn, fix $m \leq pn$ and for $max(0, n - m) \leq i \leq n - \lceil m/p \rceil$ set

$$\gamma_{i} := \begin{cases} \binom{n-i}{\frac{m-i}{p-1}} (-\alpha)^{p-n+i}, & \text{if } i \equiv m-n \pmod{(p-1)} \\ 0, & \text{otherwise} \end{cases}$$

and let μ be the maximum i such that $\gamma_i \neq 0.$ In particular, $\mu \leq n - \lceil m/p \rceil.$

Theorem (Cont.)

- 1. If μ does not exist, then $p_m = 0$ for all $P \in I_{n'}^A$.
- 2. If $\mu = 0$, then $p_m = \gamma_0$ for all $P \in I_{n'}^A$.
- 3. If $\mu = 1$, then for all $P \in I_{n'}^A$, we have that $p_m = \gamma_0 + \gamma_1 \kappa$ for some $\kappa \in \mathbf{F}_q$ with $\operatorname{Tr}(\kappa/\alpha^p) \neq 0$ and there exists some $P \in I_{n'}^A$ such that $p_m = \gamma_0 + \gamma_1 \kappa$ for all $\kappa \in \mathbf{F}_q$ with $\operatorname{Tr}(\kappa/\alpha^p) \neq 0$.
- 4. If $2 \le \mu \le n/2$, there exists some $P \in I_{n'}^A$ such that $p_m = \kappa$ for all $\kappa \in \mathbf{F}_q$, given that $q \ge 65$ or $n \ge 26$.

TWO EIGENVALUES

If A has two distinct eigenvalues, then $[A] \sim [B]$, where $B = \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}$ for some $\alpha \in \mathbf{F}_q^*$. It is clear that $F \in \mathbf{F}_q[X]$ satisfies $B \circ F \sim_q F \iff F(X) \sim_q F(\alpha X)$. First, we prove.

Lemma

Let α be an element of \mathbf{F}_q^* of multiplicative order r. A polynomial $F \in \mathbf{F}_q[X]$ satisfies $F(X) \sim_q F(\alpha X)$ if and only if there exists some $G \in \mathbf{F}_q[X]$ and $k \in \mathbf{Z}_{\geq 0}$ such that $F(X) = X^k G(X^r)$.

It is clear now that the elements of $I_{n'}^B$ should be of the form $P(X^r)$, for some $P \in I_n$.

Theorem (Cohen, 1969)

Let $P \in I_n$ and r be such that gcd(r, q) = 1, the square-free part of r divides q - 1 and $4 \nmid gcd(r, q^n + 1)$, then $P(X^r)$ is irreducible if and only if gcd(r, (q - 1)/e) = 1, where e is the order of $(-1)^n p_0$.

- The irreducibility of $P(X^r)$ depends solely on the choice of p_0 .
- The constant term of primitive polynomials satisfies this condition.
- It is known that we have exactly $\varphi(r)(q-1)/r$ choices for p_0 . We denote this set by \mathfrak{C} .
- Notice that we already have enough to prescribe the coefficients of the polynomials in $I_{n'}^{B}$.

Our next step is to move to the case of arbitrary A.

Correlating $I_{n'}^{C}$ and $I_{n'}^{D}$

Lemma

Suppose that $[C], [D] \in PGL(2, q)$ such that $[C] \sim [D]$, then map

$$\varphi : I_{n'}^{\mathsf{C}} \to I_{n'}^{\mathsf{D}}, \ [F] \mapsto [U \circ F],$$

where $U \in GL(2, q)$ is such that $[D] = [UCU^{-1}]$, is a bijection.

Before proceeding, we observe that the above combined with what we already know about $I_{n'}^B$ imply that $I_{n'}^A \neq \emptyset \iff r \mid n'$, so from now on we assume that n' = rn. Moreover, by utilizing the above bijection, given that $[A] \sim [B]$, we can write any coefficient of $Q \in I_{n'}^A$, as a linear expression of the coefficients of some $P' \in I_{n'}^B$.

It follows that the *m*-th coefficient of *Q* is

$$q_m = \sum_{i=0}^{n-\lceil m/r\rceil} \delta_i p_{n-i},$$

i.e. a linear expression of the high-degree coefficients of *P*, where *P* is such that $P'(X) = P^R(X^r)$. Further, we define μ as the largest *i* such that $\delta_i \neq 0$ and $r \mid i$. If such μ does not exist, then $q_m = 0$. If $\mu = 0$, then $q_m = \delta_0 \mathfrak{c}$ for any $\mathfrak{c} \in \mathfrak{C}$. So, from now we assume that $\mu \geq 1$.

With the latter in mind, we fix some $c \in \mathfrak{C}$ and seek irreducible polynomials of degree n with $p_0 = c$ that satisfy $\sum_{i=0}^{\mu} \delta_i p_i = c\kappa$ for some $\kappa \in \mathbf{F}_q$. Next, we fix $\sigma : \mathbf{G}_{\mu} \to \mathbf{F}_q$, $H \mapsto \sum_{i=0}^{\mu} \delta_i h_i$ and set

$$W := \sum_{H \in \mathbf{G}_{\mu-1}} \Lambda(H) \sum_{\substack{P \equiv cHF_c^{-1} \pmod{X^{\mu+1}}}} 1.$$

It is now clear that if $w \neq 0$, then there exists some $P \in I_n$ with $p_0 \in \mathfrak{C}$ that satisfies $\sum_{i=0}^{\mu} \delta_i p_i = \kappa \mathfrak{c}$, which in turn implies the existence of some $Q \in I_{n'}^A$ with $q_m = \kappa$.

• Working as before, we get the following condition.

$$q^{n/2} \ge 2n(\mu+1)q^{(\mu+1)/2} + rac{q}{q+1}$$

• This is satisfied for all $1 \le \mu < n/2$, for $q \ge 31$ and for $n \ge 47$.

Main result

Theorem

Let $[A] \in PGL(2, q)$ be such that $[A] \sim \left[\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \right]$ for some $\alpha \in \mathbf{F}_q$ of order r > 1 and $0 \le m \le n'$. First, $I_{n'}^A \ne \emptyset \iff r \mid n'$, so assume n' = rn. Further, set $\mathfrak{C} := \{ x \in \mathbf{F}_q \mid \gcd(r, (q-1)/\operatorname{ord}(x)) = 1 \}$. If $[A] = \left[\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \right]$, then for any $P \in I_{n'}^A$, $p_m = 0$ for all $r \nmid m$ and $p_0 \in \mathfrak{C}$, while for any $\kappa \in \mathbf{F}_a$ there exists some $P \in \mathbf{I}_{n'}^A$ with $p_m = \kappa$ for any $m \neq 0$, $r \mid m$, while the same holds for m = 0 and $\kappa \in \mathfrak{C}$. If $[A] \neq [(\begin{smallmatrix} \alpha & 0 \\ 0 & 1 \end{smallmatrix})]$, compute $a, c, d \in \mathbf{F}_a$ such that $[A] = [UBU^{-1}]$, where $B = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$ and $U = \begin{pmatrix} a & 0 \\ c & d \end{pmatrix}$ and for $0 \le i \le n - \lfloor m/r \rfloor$, set $\delta_i := \binom{(n-i)r}{m} a^m c^{(n-i)r-m} d^{ir}$. Let $\mu := \max\{j : \delta_i \neq 0\}$. In particular $\mu \leq n - \lceil m/r \rceil$.

Theorem (Cont.)

- 1. If μ does not exist, then $p_m = 0$ for all $P \in I_n^A$.
- 2. If $\mu = 0$, then for all $P \in I_{n'}^A$, we have that $p_m = \delta_0 \mathfrak{c}$ for some $\mathfrak{c} \in \mathfrak{C}$. Conversely, there exists some $P \in I_{n'}^A$ with $p_m = \delta_0 \mathfrak{c}$ for all $\mathfrak{c} \in \mathfrak{C}$.
- 3. If $0 < \mu < n/2$ then there exists some $P \in I_{n'}^A$ with $p_m = \kappa$ for all $\kappa \in \mathbf{F}_q$, given that $n \ge 5$ and $q \ge 31$ or $n \ge 47$.

FURTHER RESEARCH

- 1. Check what happens for small values of q and n.
- 2. Extend this to all matrices (not just lower-triangular).
- 3. Prescribe the low-degree coefficients.

Thank You!