Prescribing Coefficients of Invariant Irreducible Polyomials

Giorgos Kapetanakis
Boğaziçi University Mathematics Colloquium, November 2017
Sabancı University
Supported by TÜВітAK Project Number 114F432

Where you can find this work:
圄 G. Kapetanakis. Prescribing coefficients of invariant irreducible polynomials.
Journal of Number Theory, 180(C):615-628, 2017.

Motivation

Some definitions

- By \mathbf{F}_{q} we denote the finite field of q elements. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}(2, q)$ and $F \in \mathbf{F}_{q}[X]$. Define

$$
A \circ F=(b X+d)^{\operatorname{deg}(F)} F\left(\frac{a X+c}{b X+d}\right)
$$

This defines an action of $\mathrm{GL}(2, q)$ on $\mathbf{F}_{q}[X]$.

- For $A, B \in G L(2, q)$ and $F, G \in \mathbf{F}_{q}[X]$, define

$$
\begin{aligned}
A \sim_{q} B: \Longleftrightarrow A & =\lambda B, \text { for some } \lambda \in \mathbf{F}_{q}^{*} \text { and } \\
F \sim_{q} G: \Longleftrightarrow F & =\lambda G, \text { for some } \lambda \in \mathbf{F}_{q}^{*}
\end{aligned}
$$

- This action induces an action of $\operatorname{PGL}(2, q)$ on $\mathbf{F}_{q}[X] / \sim_{q}$.

Some definitions

- For $F \in \mathbf{F}_{q}[X]$, the equivalence class
$[F]:=\left\{G \in \mathbf{F}_{q}[X] \mid G \sim_{q} F\right\}$ consists of polynomials of the same degree with F that are all either irreducible or reducible and every such class contains exactly one monic polynomial.
- Let $\mathbf{I}_{n}:=\left\{[P] \mid P \in \mathbf{F}_{q}[X]\right.$ irreducible, $\left.\operatorname{deg}(P)=n\right\}$. It is well-known that the action of $\operatorname{PGL}(2, q)$ we saw before induces an action of $\operatorname{PGL}(2, q)$ on \mathbf{I}_{n}.
- For $A \in G L(2, q)$ and $n \in \mathbf{N}$, we define

$$
\mathbf{I}_{n}^{A}:=\left\{[P] \in \mathbf{I}_{n} \mid[A \circ P]=[P]\right\} .
$$

The study of the set I_{n}^{A}

Recently, the set \mathbb{I}_{n}^{A} has started gaining attention. Namely, authors have studied

- its cardinality and characterization (Garefalakis 2010, Reis 2017, Stichtenoth and Topuzoğlu 2011) and
- the multiplicative order of the roots of its elements (Martínez et al. 2017),
- while extending these notions to multivariate polynomials has also been investigated (Reis 2017).

Nonetheless, the form (i.e. how these polynomials look) of the elements of I_{n}^{A} (for general A) so far remains to be investigated.

An example

As an example, take $R=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and some $F \in \mathbf{F}_{q}[X]$. Then

$$
R \circ F=X^{\operatorname{deg}(F)} F(1 / X)
$$

i.e. the reciprocal of F and I_{n}^{R} is the set of self-reciprocal irreducible polynomials. A result regarding these polynomials is the following

Theorem (Garefalakis-K., 2012-2014)

Let q be odd, $a \in \mathbf{F}_{q}$ and n, k be such that $k \leq n / 2$. There exists some $F=X^{2 n}+\sum_{i=0}^{2 n-1} f_{i} x^{i} \in \mathbf{I}_{2 n}^{R}$ with $f_{k}=a$, unless $(q, n, k, a)=(3,3,1,0)$ or $(3,4,2,0)$.

Can we say anything about the coefficients of the polynomials of \mathbf{I}_{n}^{A} for arbitrary A?

An experiment

Below, we present the results of a quick experiment regarding the set I_{6}^{A}, where A is chosen to be $\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right),\left(\begin{array}{cc}2 & 0 \\ 1 & 1\end{array}\right)$ and $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$ and $q=3$.

$A=\left(\begin{array}{ll}1 & 0 \\ 2\end{array}\right)$	$A=\left(\begin{array}{ll}2 & 0 \\ 1\end{array}\right)$	$A=\left(\begin{array}{ll}2 & 0 \\ 0\end{array}\right)$
$X^{6}+X^{4}+X^{3}+X^{2}+2 X+2$	$X^{6}+2 X^{3}+2 X^{2}+X+1$	$X^{6}+2 X^{2}+1$
$X^{6}+X^{4}+2 X^{3}+X^{2}+X+2$	$X^{6}+X^{4}+2 X^{2}+2 X+2$	$X^{6}+X^{4}+2 X^{2}+1$
	$X^{6}+2 X^{4}+X^{3}+2 X+1$	$X^{6}+2 X^{4}+1$
	$X^{6}+2 X^{4}+X^{3}+X^{2}+X+2$	$X^{6}+2 X^{4}+X^{2}+1$

Prescribed coefficients of irreducible polynomials

The most famous result as far as prescribing coefficients of irreducible polynomials over finite fields is concerned, is the following:

Theorem (Hansen-Mullen irreducibility conjecture)

Let $a \in \mathbf{F}_{q}, n \geq 2$ and fix $0 \leq j<n$. There exists an irreducible $P(X)=X^{n}+\sum_{k=0}^{n-1} p_{k} X^{k} \in \mathbf{F}_{q}[X]$ with $p_{j}=a$, except when

1. $j=a=0$ or
2. q is even, $n=2, j=1$, and $a=0$.

Prescribed coefficients of irreducible polynomials

- Initially conjectured by Hansen and Mullen 1992.
- Proved for $q>19$ or $n \geq 36$ by Wan 1997.
- Ham and Mullen 1998 verified the remaining cases by computer search.
- Several extensions have been obtained (i.e. Garefalakis 2008, Panario and Tzanakis 2011)
- While most authors use a variation of Wan's approach, Recently new methods have emerged (Ha 2016, Pollack 2013, Tuxanidy and Wang 2017, Granger 2017).

A note for primitive polynomials

Results from Fan and Han 2003-2004, Cohen 2006 and Cohen and Prešern 2006-2008 settled the Hansen-Mullen primitivity conjecture, which claimed the existence of primitive polynomials over F_{q} with prescribed coefficients, only this time with a few additional exceptions.

Our contribution

In this work:

- We confine ourselves to the case when $A \in G L(2, q)$ is lower-triangular.
- We distinguish two cases: when $A \in G L(2, q)$ has one eigenvalue and when A has two eigenvalues.
- The conditions, whether a certain coefficient of some $F \in \mathbf{I}_{n}^{A}$ can or cannot take any value in \mathbf{F}_{q} are provided.
- For the former case we provide sufficient conditions for the existence of polynomials of I_{n}^{A} that indeed have these coefficients.

Outline of our method

1. We characterize the elements of I_{n}^{A} in two steps:
a. find $H \in \mathbf{F}_{q}[X]$ such that $A \circ Q \sim_{q} Q \Longleftrightarrow Q(X)=P(H(X))$ for some $P \in \mathbf{F}_{q}[X]$ and
b. then look when this composition is irreducible.
2. We write the arbitrary coefficient of Q as a linear combination of the high-degree coefficients of P, i.e. the low-degree coefficients of P^{R}, the reciprocal of P
3. We prove the existence of P^{R}, such that its low-degree coefficients satisfy the above linear expression and such that the composition $P(H(X))$ is irreducible, with the help of Dirichlet characters (Wan's method).

One eigenvalue

Characterization

If A has one eigenvalue, then

$$
[A]= \begin{cases}{\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right],} & \text { or } \\
{\left[\left(\begin{array}{ll}
1 & 0 \\
\alpha & 1
\end{array}\right)\right],} & \text { for some } \alpha \in \mathbf{F}_{q}^{*}\end{cases}
$$

The first situation is already settled. For the second case,

$$
A \circ F \sim_{q} F \Longleftrightarrow F(X) \sim_{q} F(X+\alpha) \Longleftrightarrow F(X)=F(X+\alpha),
$$

that is F is periodic. We prove the following characterization of those polynomials.

Lemma

Let $\alpha \in \mathbf{F}_{q}^{*}$. Some $F \in \mathbf{F}_{q}[X]$ satisfies $F(X)=F(X+\alpha)$ if and only if there exist some $G \in \mathbf{F}_{q}[X]$ such that $F(X)=G\left(X^{p}-\alpha^{p-1} X\right)$.

Irreducibility of the composition

We will use following.

Theorem (Agou, 1977)

Let q be a power of the prime $p, \alpha \in \mathbf{F}_{q}$ and $P \in \mathbf{I}_{n}$. The composition $P\left(X^{p}-\alpha^{p-1} X\right)$ is irreducible if and only if $\operatorname{Tr}\left(p_{n-1} / \alpha^{p}\right) \neq 0$, where Tr stands for the trace function $\mathbf{F}_{q} \rightarrow \mathbf{F}_{p}$.

So, the monic irreducible periodic polynomials are those of the form $Q(X)=P\left(X^{p}-\alpha^{p-1} X\right)$, for some $P \in I_{n}$ such that $\operatorname{Tr}\left(p_{n-1} / \alpha^{p}\right) \neq 0$.

Expression of the m-th coefficient

So, the m-th coefficient of Q, where $0 \leq m \leq p n$, is

$$
q_{m}=\sum_{\substack{\max (0, n-m) \leq i \leq n-\lceil m / p\rceil \\ i \equiv m-n \\(\bmod (p-1))}} y_{i} p_{i}^{R}
$$

that is a linear expression of some of the $\mu+1$ low-degree coefficients of the reciprocal of P, where μ is the largest number such that $\gamma_{\mu} \neq 0$.

A note on μ

Regarding μ, observe that

1. it is possible for such μ to not exist (for example when $m=n p-1$ and $p>2$) and
2. if $\mu=0$ or 1 , then the value of q_{m} has to be a given combination of p_{0}^{R} and p_{1}^{R}, but since neither of them is chosen arbitrarily, it can only take certain values.

So, from now on we assume that μ exists and $\mu \geq 2$.

Preliminaries

Define to the following map

$$
\sigma: \mathbf{G}_{\mu} \rightarrow \mathbf{F}_{q}, \quad H \mapsto \sum_{\substack{\max (0, n-m) \leq i \leq \mu \\ i \equiv m-n \\(\bmod (p-1))}} \gamma_{i} h_{i},
$$

where $\mathbf{G}_{\mu}:=\left\{f \in \mathbf{F}_{q}[X] \mid \operatorname{deg}(f) \leq \mu, f_{0}=1\right\}$. The following correlates the inverse image of σ with $\mathbf{G}_{\mu-1}$.

Proposition (Garefalakis-K., 2012)

Let $\kappa \in \mathbf{F}_{q}$. Set $F \in \mathbf{G}_{\mu}$ with $f_{i}:=\gamma_{i-1} \gamma_{\mu}^{-1}$ for $0<i<\mu$ and $f_{\mu}:=\gamma_{\mu}^{-1}\left(\gamma_{0}-\kappa\right)$. The map

$$
\tau: \mathbf{G}_{\mu-1} \rightarrow \sigma^{-1}(\kappa), \quad H \mapsto H F^{-1} \quad\left(\bmod X^{\mu+1}\right)
$$

is a bijection.

Preliminaries

The following summarizes our observations.

Proposition

Let $\kappa \in \mathbf{F}_{q}$ and $0 \leq m \leq(p-1) n$. If m, n and p are such that there exist some i with $\lceil m / p\rceil \leq i \leq \min (m, n-1)$ and $i \equiv m$ $(\bmod (p-1))$ and there exists some $P \in J_{n}$ such that $\operatorname{Tr}\left(p_{1} / \alpha^{p-1}\right) \neq 0$ such that $P \equiv H F^{-1}\left(\bmod X^{\mu+1}\right)$ for some $H \in \mathbf{G}_{\mu-1}$, then there exists some $Q \in \mathbf{I}_{\text {pn }}$, such that $Q(X)=Q(X+\alpha)$ and $q_{m}=\kappa$.

Characters and character sums

Let

$$
\Lambda(H):= \begin{cases}\operatorname{deg}(P), & \text { if } H \text { is a power of a single irreducible } P \\ 0, & \text { otherwise },\end{cases}
$$

be the von Mangoldt function on $\mathbf{F}_{q}[X]$. We define the following weighted sum

$$
w:=\sum_{H \in \mathbf{G}_{\mu-1}} \Lambda(H) \sum_{\substack{P \in \mathbf{J}_{n}, \operatorname{Tr}\left(p_{1} / \alpha^{p-1}\right) \neq 0 \\ P \equiv H F^{-1} \\\left(\bmod x^{\mu+1}\right)}} 1
$$

where F is the polynomial defined earlier. If $w \neq 0$, we have our desired result.

Characters and character sums

- Let M be a polynomial of F_{q} of degree ≥ 1. The characters of the group $\left(\mathbf{F}_{q}[X] / M F_{q}[X]\right)$ * are called Dirichlet characters modulo M.
- Let $U:=\left(\mathbf{F}_{q}[X] / X^{\mu+1} \mathbf{F}_{q}[X]\right)^{*}$. Furthermore, set

$$
\psi: U \rightarrow \mathbf{C}^{*}, \quad F \mapsto \exp \left(2 \pi i \operatorname{Tr}\left(f_{1} /\left(f_{0} \alpha^{p}\right)\right) / p\right)
$$

and notice that for $P \in \mathbf{J}_{n}$ (where $P \in \mathbf{J}_{n} \Longleftrightarrow P^{R} \in \mathbf{I}_{n}$), $\operatorname{Tr}\left(p_{1} / \alpha^{p}\right) \neq 0 \Longleftrightarrow \psi(P) \neq 1$.

- Notice that ψ is also a Dirichlet character modulo $X^{\mu+1}$, while it is clear that $\operatorname{ord}(\Psi)=p$.

Character sum estimates

Weil's theorem of the Riemann hypothesis for function fields implies.

Proposition (Weil)

Let x be a non-trivial Dirichlet character modulo M such that $x\left(\mathbf{F}_{q^{*}}\right)=1$. Then

$$
\left|\sum_{P \in I_{n}} x(P)\right| \leq \frac{1}{n}\left(\operatorname{deg}(M) q^{n / 2}+1\right) .
$$

Character sum estimates

Proposition

Let X and ψ be Dirichlet characters modulo M, such that $\operatorname{ord}(\psi)=p$ and $\chi\left(F_{q}^{*}\right)=1$.

1. If $X \notin\langle\psi\rangle,\left|\sum_{\substack{p \in \mathbf{I}_{n} \\ \psi(P) \neq 1}} X(P)\right| \leq \frac{2(p-1)}{p n} \cdot\left(\operatorname{deg}(M) q^{n / 2}+1\right)$,
2. If $X \in\langle\Psi\rangle^{*},\left|\sum_{\substack{P \in I_{n} \\ \psi(P) \neq 1}} X(P)\right| \leq \frac{\pi_{q}(n)}{p}+\frac{2 p-3}{p n} \cdot\left(\operatorname{deg}(M) q^{n / 2}+1\right)$.
3. If $x=x_{0}$,

$$
\left|\sum_{\substack{P \in \ln _{\begin{subarray}{c}{ } }}^{\psi(P) \neq 1}}\end{subarray}} X(P)\right| \geq \frac{(p-1) \pi_{q}(n)}{p}-\frac{p-1}{p n} \cdot\left(\operatorname{deg}(M) q^{n / 2}+1\right) \text {, where }
$$

$\pi_{q}(n)$ stands for the number of monic irreducible polynomials of degree n over \mathbf{F}_{q}.

Completion of the proof

With the orthogonality relations in mind, we define $V:=\left\{X \in \widehat{U} \mid X\left(F_{q}^{*}\right)=1\right\}$, check that V is a subgroup of \widehat{U} with $\psi \in V$ and then rewrite w as follows:

$$
w=\frac{1}{|V|} \sum_{x \in V} X(F) \sum_{H \in \mathbf{G}_{\mu-1}} \Lambda(H) \bar{X}(H) \sum_{P \in J_{n}, \psi(P) \neq 1} X(P) .
$$

We separate the term that corresponds to $X=X_{0}$ and call it A_{ψ}, then the one that corresponds to $X \in\langle\psi\rangle \backslash\left\{X_{0}\right\}$ and call it B_{ψ} and finally C_{ψ} will stand for the term that corresponds to $X \notin\langle\psi\rangle$. Hence $w=A_{\psi}+B_{\psi}+C_{\psi}$.

Completion of the proof

Using the character sum estimate we proved and some well-known results, we get:

- For C_{ψ}, we have $\left|C_{\psi}\right| \leq \frac{4 \mu^{2}}{n} \cdot q^{(n+\mu-1) / 2}$.
- For B_{ψ} we get $\left|B_{\psi}\right| \leq \frac{2 \mu}{q^{(\mu+1) / 2}} \cdot \pi_{q}(n)+\frac{4 \mu^{2}}{n} \cdot q^{(n-\mu-1) / 2}$.
- Finally, for A_{ψ}, we get $\left|A_{\psi}\right| \geq \frac{1}{2 q}\left(\pi_{q}(n)-\frac{\mu}{n} \cdot q^{n / 2}\right)$.

Completion of the proof

Since $w=A_{\psi}+B_{\psi}+C_{\psi}$, it follows that $w \neq 0$ provided that $\left|A_{\psi}\right|>\left|B_{\psi}\right|+\left|C_{\psi}\right|$. This, combined with known lower bounds for $\pi_{q}(n)$ implies the following condition for $w>0$:

$$
\begin{aligned}
& q^{n / 2}\left(q^{(\mu-1) / 2}-4 \mu\right)+\frac{4 \mu}{q-1} \geq \\
& 2 \mu q^{\mu}\left(4 \mu+\frac{1}{2 q^{\mu / 2}}+\frac{4 \mu}{q^{\mu}}+\frac{1}{2 \mu q^{(\mu+1) / 2}(q-1)}\right)
\end{aligned}
$$

The above is satisfied for $q \geq 67$ for all $2 \leq \mu \leq n / 2$. It is also satisfied for $n \geq 26$ for all q and $2 \leq \mu \leq n / 2$.

Main result

Theorem

$$
\begin{aligned}
& \text { Let }[A]=\left[\left(\begin{array}{cc}
1 & 0
\end{array}\right)\right] \in \operatorname{PGL}(2, q), n^{\prime} \in \mathbf{Z} \text { and } \alpha \neq 0 \text {, then } \\
& \mathbf{A}_{n^{\prime}}^{A}=\emptyset \Longleftrightarrow p \nmid n^{\prime} . \text { Suppose } n^{\prime}=p n, \text { fix } m \leq p n \text { and for } \\
& \max (0, n-m) \leq i \leq n-\lceil m / p\rceil \text { set } \\
& \qquad Y_{i}:= \begin{cases}\left(\begin{array}{c}
n-i \\
\frac{m-n+i}{p-1} \\
0,
\end{array}(-\alpha)^{p-n+i},\right. & \text { if } i \equiv m-n(\bmod (p-1)) \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

and let μ be the maximum i such that $\gamma_{i} \neq 0$. In particular, $\mu \leq n-\lceil m / p\rceil$.

Main result

Theorem (Cont.)

1. If μ does not exist, then $p_{m}=0$ for all $P \in \mathbf{I}_{n^{\prime}}^{A}$.
2. If $\mu=0$, then $p_{m}=\gamma_{0}$ for all $P \in \mathbf{I}_{n^{\prime}}^{A}$.
3. If $\mu=1$, then for all $\mathbf{P} \in \mathbf{I}_{n^{\prime \prime}}^{A}$, we have that $p_{m}=\gamma_{0}+\gamma_{1} \mathrm{~K}$ for some $\kappa \in \mathbf{F}_{q}$ with $\operatorname{Tr}\left(\kappa / \alpha^{D}\right) \neq 0$ and there exists some $P \in \mathbf{I}_{n^{\prime}}^{A}$ such that $p_{m}=\gamma_{0}+\gamma_{1} \kappa$ for all $\kappa \in \mathbf{F}_{q}$ with $\operatorname{Tr}\left(\kappa / \alpha^{p}\right) \neq 0$.
4. If $2 \leq \mu \leq n / 2$, there exists some $P \in \mathbb{I}_{n^{\prime}}^{A}$ such that $p_{m}=\kappa$ for all $\kappa \in \mathbf{F}_{q}$, given that $q \geq 65$ or $n \geq 26$.

Two EIGENVALUES

Charaterization

If A has two distinct eigenvalues, then $[A] \sim[B]$, where $B=\left(\begin{array}{cc}\alpha & 0 \\ 0 & 1\end{array}\right)$ for some $\alpha \in \mathbf{F}_{q}^{*}$. It is clear that $F \in \mathbf{F}_{q}[X]$ satisfies $B \circ F \sim_{q} F \Longleftrightarrow F(X) \sim_{q} F(\alpha X)$. First, we prove.

Lemma

Let α be an element of \mathbf{F}_{q}^{*} of multiplicative order r. A polynomial $F \in \mathbf{F}_{q}[X]$ satisfies $F(X) \sim_{q} F(\alpha X)$ if and only if there exists some $G \in \mathbf{F}_{q}[X]$ and $k \in \mathbf{Z}_{\geq 0}$ such that $F(X)=X^{k} G\left(X^{r}\right)$.

It is clear now that the elements of $I_{n^{\prime}}^{B}$ should be of the form $P\left(X^{r}\right)$, for some $P \in \mathbf{I}_{n}$.

Irreducibility of the composition

Theorem (Cohen, 1969)

Let $P \in \mathbf{I}_{n}$ and r be such that $\operatorname{gcd}(r, q)=1$, the square-free part of r divides $q-1$ and $4 \nmid \operatorname{gcd}\left(r, q^{n}+1\right)$, then $P\left(X^{r}\right)$ is irreducible if and only if $\operatorname{gcd}(r,(q-1) / e)=1$, where e is the order of $(-1)^{n} p_{0}$.

- The irreducibility of $P\left(X^{r}\right)$ depends solely on the choice of p_{0}.
- The constant term of primitive polynomials satisfies this condition.
- It is known that we have exactly $\varphi(r)(q-1) / r$ choices for p_{0}. We denote this set by \mathfrak{C}.
- Notice that we already have enough to prescribe the coefficients of the polynomials in $I_{n^{\prime}}^{B}$,

Our next step is to move to the case of arbitrary A.

Correlating $I_{n^{\prime}}^{C}$ and $I_{n^{\prime}}^{D}$

Lemma

Suppose that $[C],[D] \in \operatorname{PGL}(2, q)$ such that $[C] \sim[D]$, then map

$$
\varphi: I_{n^{\prime}}^{C} \rightarrow I_{n^{\prime}}^{D},[F] \mapsto[U \circ F]
$$

where $U \in G L(2, q)$ is such that $[D]=\left[U C U^{-1}\right]$, is a bijection.
Before proceeding, we observe that the above combined with what we already know about $\mathbf{I}_{n^{\prime}}^{B}$ imply that $\mathbf{I}_{n^{\prime}}^{A} \neq \emptyset \Longleftrightarrow r \mid n^{\prime}$, so from now on we assume that $n^{\prime}=r n$. Moreover, by utilizing the above bijection, given that $[A] \sim[B]$, we can write any coefficient of $Q \in \mathbf{I}_{n^{\prime}}^{A}$, as a linear expression of the coefficients of some $P^{\prime} \in \mathbf{I}_{n^{\prime}}^{B}$.

The coefficient of Q

It follows that the m-th coefficient of Q is

$$
q_{m}=\sum_{i=0}^{n-\lceil m / r\rceil} \delta_{i} p_{n-i}
$$

i.e. a linear expression of the high-degree coefficients of P, where P is such that $P^{\prime}(X)=P^{R}\left(X^{r}\right)$. Further, we define μ as the largest i such that $\delta_{i} \neq 0$ and $r \mid i$. If such μ does not exist, then $q_{m}=0$. If $\mu=0$, then $q_{m}=\delta_{0} \mathfrak{c}$ for any $\mathfrak{c} \in \mathfrak{C}$. So, from now we assume that $\mu \geq 1$.

Completion of the proof

With the latter in mind, we fix some $\mathfrak{c} \in \mathfrak{C}$ and seek irreducible polynomials of degree n with $p_{0}=c$ that satisfy
$\sum_{i=0}^{\mu} \delta_{i} p_{i}=\mathfrak{c k}$ for some $k \in \mathbf{F}_{q}$. Next, we fix $\sigma: \mathbf{G}_{\mu} \rightarrow \mathbf{F}_{q}$,
$H \mapsto \sum_{i=0}^{\mu} \delta_{i} h_{i}$ and set

$$
w:=\sum_{H \in \mathbf{G}_{\mu-1}} \Lambda(H) \sum_{\substack{p_{p \in I_{n}} \\ P \equiv c H F_{c}^{-1} \\\left(\bmod X^{\mu+1}\right)}} 1 .
$$

It is now clear that if $w \neq 0$, then there exists some $P \in \mathbf{I}_{n}$ with $p_{0} \in \mathfrak{C}$ that satisfies $\sum_{i=0}^{\mu} \delta_{i} p_{i}=\kappa \mathfrak{c}$, which in turn implies the existence of some $Q \in \mathbf{I}_{n^{\prime}}^{A}$ with $q_{m}=\kappa$.

Completion of the proof

- Working as before, we get the following condition.

$$
q^{n / 2} \geq 2 n(\mu+1) q^{(\mu+1) / 2}+\frac{q}{q+1}
$$

- This is satisfied for all $1 \leq \mu<n / 2$, for $q \geq 31$ and for $n \geq 47$.

Main result

Theorem

Let $[A] \in \operatorname{PGL}(2, q)$ be such that $[A] \sim\left[\left(\begin{array}{cc}\alpha & 0 \\ 0 & 1\end{array}\right)\right]$ for some $\alpha \in \mathbf{F}_{q}$ of order $r>1$ and $0 \leq m \leq n^{\prime}$. First, $\mathbf{I}_{n^{\prime}}^{A} \neq \emptyset \Longleftrightarrow r \mid n^{\prime}$, so assume $n^{\prime}=r n$. Further, set
$\mathfrak{C}:=\left\{x \in \mathbf{F}_{q} \mid \operatorname{gcd}(r,(q-1) / \operatorname{ord}(x))=1\right\}$. If $[A]=\left[\left(\begin{array}{cc}\alpha & 0 \\ 0 & 1\end{array}\right)\right]$, then for any $P \in \mathbb{I}_{n^{\prime}}^{\mathrm{A}}, p_{m}=0$ for all $r \nmid m$ and $p_{0} \in \mathfrak{C}$, while for any $\kappa \in \mathbf{F}_{q}$ there exists some $P \in \mathbf{I}_{n^{\prime}}^{A}$ with $p_{m}=\kappa$ for any $m \neq 0, r \mid m$, while the same holds for $m=0$ and $k \in \mathfrak{C}$. If $[A] \neq\left[\left(\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right)\right]$, compute $a, c, d \in \mathbf{F}_{q}$ such that $[A]=\left[U B U^{-1}\right]$, where $B=\left(\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right)$ and $U=\left(\begin{array}{cc}a & 0 \\ c & d\end{array}\right)$ and for $0 \leq i \leq n-\lceil m / r\rceil$, set
 particular $\mu \leq n-\lceil m / r\rceil$.

Main result

Theorem (Cont.)

1. If μ does not exist, then $p_{m}=0$ for all $P \in \mathbf{I}_{n}^{A}$.
2. If $\mu=0$, then for all $P \in \mathbf{I}_{n^{\prime}}^{A}$, we have that $p_{m}=\delta_{0} \mathfrak{c}$ for some $\mathfrak{c} \in \mathfrak{C}$. Conversely, there exists some $P \in \mathbf{I}_{n^{\prime}}^{A}$ with $p_{m}=\delta_{0} \mathfrak{c}$ for all $\mathfrak{c} \in \mathfrak{C}$.
3. If $0<\mu<n / 2$ then there exists some $P \in \mathbf{I}_{n^{\prime}}^{A}$ with $p_{m}=\kappa$ for all $k \in F_{q}$, given that $n \geq 5$ and $q \geq 31$ or $n \geq 47$.

Further research

Further research

1. Check what happens for small values of q and n.
2. Extend this to all matrices (not just lower-triangular).
3. Prescribe the low-degree coefficients.

Thank You!

