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MOTIVATION



Some definitions

* By Fq we denote the finite field of g elements. Let
A= (9%) € GL(2,q) and F € Fq[X]. Define

AoF = (bX+ d)deeF <aX+ C) .

bX+d

This defines an action of GL(2, q) on Fg4[X].
* ForA,B € GL(2,q9) and F,G € F4[X], define

A~qB:<= A=AB, forsome A € F; and
F~qG:<+= F=AG, forsome A € F;

« This action induces an action of PGL(2,q) on F4[X]/ ~q.
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Some definitions

« For F € F4[X], the equivalence class
[F] :== {G € F4[X] | G ~q F} consists of polynomials of the
same degree with F that are all either irreducible or
reducible and every such class contains exactly one
monic polynomial.

* Letl, := {[P] | P € Fg[X] irreducible, deg(P) = n}. It is
well-known that the action of PGL(2, q) we saw before
induces an action of PGL(2,q) on I,.

« For A € GL(2,q9) and n € N, we define

Ih:={[Pl €l |[AcP]=[P]}.
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The study of the set I

Recently, the set I} has started gaining attention. Namely,
authors have studied

- its cardinality and characterization (Garefalakis 2010, Reis
2017, Stichtenoth and Topuzoglu 2011) and

- the multiplicative order of the roots of its elements
(Martinez et al. 2017),

- while extending these notions to multivariate
polynomials has also been investigated (Reis 2017).

Nonetheless, the form (i.e. how these polynomials look) of
the elements of Iﬁ (for general A) so far remains to be
investigated.
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As an example, take R = (9 1) and some F € Fg[X]. Then
R o F = X9e8(FIF(1/X),

i.e. the of Fand I} is the set of

polynomials. A result regarding these polynomials

is the following

Theorem (Garefalakis-K., 2012-2014)

Let g be odd, a € Fg and n, k be such that R < n/2. There
exists some F = X*" + S°7" 1 fixi € 1§ with f, = a, unless
(g,n,k,a) =(3,3,1,0) or (3,4,2,0).

Can we say anything about the coefficients of the polynomials
of I for arbitrary A?
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Below, we present the results of a quick experiment regarding
the set I2, where A is chosen to be (1 9), (29) and (29) and

qg=3.

A=(13) [A=(3) [A=(39)
XX+ X+ X+ 2X+2 | X+ 23 + 2 + X +1 X8+ 2X2 +1
XX+ 2C+ X+ X+2 | X+ X +2C +2X+2 Xo 4+ X4 42X +1

X+ 22X + X+ 2X +1 X+ 2X* +1
X+ 2X 4+ X+ X+ X+2 | X+ 2X + X2 +1
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Prescribed coefficients of irreducible polynomials

The most famous result as far as prescribing coefficients of
irreducible polynomials over finite fields is concerned, is the
following:

Theorem (Hansen-Mullen irreducibility conjecture)

Leta € Fg, n > 2 and fix 0 < j < n. There exists an irreducible

P(X) = X" + Y_p_5 PeX® € Fq[X] with p; = a, except when
1.j=a=0or

2. giseven,n=2,j=1anda=0.
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Prescribed coefficients of irreducible polynomials

« Initially conjectured by Hansen and Mullen 1992.

« Proved for g > 19 or n > 36 by Wan 1997.

« Ham and Mullen 1998 verified the remaining cases by
computer search.

- Several extensions have been obtained (i.e. Garefalakis
2008, Panario and Tzanakis 2011)

« While most authors use a variation of Wan’s approach,
Recently new methods have emerged (Ha 2016, Pollack
2013, Tuxanidy and Wang 2017, Granger 2017).
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A note for primitive polynomials

Results from Fan and Han 2003-2004, Cohen 2006 and Cohen
and Presern 2006-2008 settled the Hansen-Mullen primitivity
conjecture, which claimed the existence of primitive
polynomials over F, with prescribed coefficients, only this
time with a few additional exceptions.
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Our contribution

In this work:

+ We confine ourselves to the case when A € GL(2,q) is
lower-triangular.

+ We distinguish two cases: when A € GL(2, q) has one
eigenvalue and when A has two eigenvalues.

« The conditions, whether a certain coefficient of some
F € I can or cannot take any value in Fq are provided.

« For the former case we provide sufficient conditions for
the existence of polynomials of 14 that indeed have these
coefficients.
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Outline of our method

1. We characterize the elements of I in two steps:
a. find H € Fg[X] suchthatAoQ ~4 Q < Q(X) = P(H(X)) for
some P € Fg[X] and
b. then look when this composition is irreducible.
2. We write the arbitrary coefficient of Q as a linear
combination of the high-degree coefficients of P, i.e. the
low-degree coefficients of PR, the reciprocal of P

3. We prove the existence of PR, such that its low-degree
coefficients satisfy the above linear expression and such
that the composition P(H(X)) is irreducible, with the help
of Dirichlet characters (Wan’s method).
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ONE EIGENVALUE



Characterization

If A has one eigenvalue, then

W{[(éin, or

[((49)], forsomeacF;.
The first situation is already settled. For the second case,
AoF~gF < F(X) ~q FX+a) <= F(X) =F(X+a),

that is F is periodic. We prove the following characterization
of those polynomials.

Lemma
Let a € F3. Some F € Fq[X] satisfies F(X) = F(X + a) if and only
if there exist some G € Fq[X] such that F(X) = G(XP — aP~X).
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Irreducibility of the composition

We will use following.

Theorem (Agou, 1977)

Let g be a power of the prime p, a € Fy and P € I,. The
composition P(XP — aP~'X) is irreducible if and only if
Tr(pn—1/aP) # 0, where Tr stands for the trace function
Fqg — Fp.

So, the monic irreducible periodic polynomials are those of
the form Q(X) = P(XP — aP~"X), for some P < I, such that
Tr(pn—1/aP) # 0.
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Expression of the m-th coefficient

So, the m-th coefficient of Q, where 0 < m < pn, is

m = Z vipf,

max (0,n—m)<i<n—[m/p]
i=m—n (mod (p—1))

that is a linear expression of some of the y + 1 low-degree
coefficients of the reciprocal of P, where p is the largest
number such thaty, # 0.
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Regarding u, observe that

1. it is possible for such p to not exist (for example when
m =np —1and p > 2) and

2. if y =0 or 1, then the value of g, has to be a given
combination of p§ and p¥, but since neither of them is
chosen arbitrarily, it can only take certain values.

So, from now on we assume that p exists and py > 2.
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Preliminaries

Define to the following map

max (0,n—m)<i<p
i=m—n (mod (p—1))

where G, := {f € Fg[X] | deg(f) < u, fo = 1}. The following
correlates the inverse image of o with G,_1.

Proposition (Garefalakis-K., 2012)
Let k € Fq. Set F € Gy with f; .= y; v, " for 0 <i < pand
fu = v, (Yo — k). The map

T:Gy_1—0 '(K), H~—HF ' (mod X"t
is a bijection.

17/37



Preliminaries

The following summarizes our observations.

Proposition

Letk e Fgand 0 <m < (p — 1)n. If m,n and p are such that
there exist some i with [m/p] <i<min(m,n—1)andi=m
(mod (p — 1)) and there exists some P € ), such that
Tr(p1/aP~1) # 0 such that P = HF~' (mod X¥*1) for some

H € Gy_4, then there exists some Q € Iy, such that

Q(X) =Q(X+a)and gm = K.
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Characters and character sums

Let

A(H) — deg(P), if Hisa power of a single irreducible P,
' 0, otherwise,

be the von Mangoldt function on Fq4[X]. We define the
following weighted sum

w:= Y A(H) > 1,

HGGp_1 P€<)n, Tr(p1/orp—1);é0
P=HF~" (mod X++")

where F is the polynomial defined earlier. If w £ 0, we have
our desired result.
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Characters and character sums

* Let M be a polynomial of F; of degree > 1. The characters
of the group (Fq[X]/MFq4[X])* are called Dirichlet
characters modulo M.

« Let U := (Fg[X]/X*T"Fq[X])*. Furthermore, set
w:U—C, Feexp(2miTr(fi/(foaP))/p)

and notice that for P € ), (where P € J, < PR e ,),
Tr(pr/aP) #0 < w(P) # 1.

+ Notice that g is also a Dirichlet character modulo X+,
while it is clear that ord(y) = p.
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Character sum estimates

Weil's theorem of the Riemann hypothesis for function fields
implies.

Proposition (Weil)

Let x be a non-trivial Dirichlet character modulo M such that
X(Fg=) = 1. Then

> x(P)

Pelp

deg( )g"? +1).
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Character sum estimates

Proposition
Let x and y be Dirichlet characters modulo M, such that
ord(w) = p and x(F) = 1.

1 X (W), |5 pet X P)| < 250 (degM)a”” + 1),
W
2 XS [ o X )’ < a0 4 263 (deg(M)q"/2 +1).
3' IfX - XO;
> Job x(P )’ > 0maln) 221 (deg(M)q"/? + 1), where
(P

( ) stands for the number of monic irreducible
polynomials of degree n over Fy.
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Completion of the proof

With the orthogonality relations in mind, we define
Vi={xeU| X(Fg) = 1}, check that Vis a subgroup of U with
w € Vand then rewrite w as follows:

W=‘1V|ZX(F) S OAHRH) S X(P).

Xev HeGy_4 P€ln, w(P)#1

We separate the term that corresponds to x = x, and call it
Ay, then the one that corresponds to x € (@) \ {X,} and call it
By and finally Cy, will stand for the term that corresponds to
X & (@). Hence w = Ay + By + Cy.
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Completion of the proof

Using the character sum estimate we proved and some
well-known results, we get:
42 —
« For Cy, we have [Cy| < &= . g(n+#=1)/2,
2 4y? -
- For By we get [By| < q(Tﬁ’)/z -Tg(n) + 4. q(n—k=1/2,

+ Finally, for Ay, we get |Ay| > 5 (mq(n) — 4 - q"/?).
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Completion of the proof

Since w = Ay + By + Cy, it follows that w # 0 provided that
|Ay| > |By| + |Cy|. This, combined with known lower bounds
for mg(n) implies the following condition for w > 0:

q"(q¥ V% — ) + ql”u >

- 1 AT 1
M| 2qu/2+q +2uq<“+1>/2(q 1))

The above is satisfied for g > 67 forall2 < y < n/2. It is also
satisfied for n > 26 forallgand 2 < p < n/2.
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Theorem

Let [A] = [(19)] € PGL(2,q), n" € Zand a # 0, then
=0« pfn Suppose n’ = pn, fix m < pn and for
max(0,n —m) <i<n - [m/p] set

p—1
0, otherwise

{(M)(aw"ﬂ ifi=m—n (mod (p—1))
Vi =

and let py be the maximum i such that y; # 0. In particular,
p<n-—[m/pl.
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Theorem (Cont.)

1. If p does not exist, then pm = 0 forall P € 14,.

2. If y =0, then pm =y, forallP e 1A,

3. If y =1, then for all P € 1A, we have that pm = v + Y,k for
some k € Fq with Tr(k/aP) # 0 and there exists some
P € 1Y, such that pm = v + v,k for all k € Fq with
Tr(k/aP) # 0.

4. If2 < p < n/2, there exists some P Iﬁ, such that pm = k
for all k € Fg, given that q > 65 or n > 26.
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TWO EIGENVALUES




Charaterization

If A has two distinct eigenvalues, then [A] ~ [B], where
B=(39) forsome a € F;. Itis clear that F € Fq[X] satisfies
BoF ~q F <= F(X) ~q F(aX). First, we prove.

Lemma

Let a be an element of F; of multiplicative orderr. A
polynomial F € F4[X] satisfies F(X) ~q F(aX) if and only if
there exists some G € Fq[X] and kR € Z>¢ such that

F(X) = XkG(X").

It is clear now that the elements of 15, should be of the form
P(X"), for some P € Ip,.
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Irreducibility of the composition

Theorem (Cohen, 1969)

Let P € 1, and r be such that gcd(r, q) = 1, the square-free
part of r divides q — 1 and 4 1 gcd(r,q" + 1), then P(X") is
irreducible if and only if gcd(r,(q — 1)/e) = 1, where e is the
order of (—1)"po.
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The set 12

« The irreducibility of P(X") depends solely on the choice of
Po.

+ The constant term of primitive polynomials satisfies this
condition.

« It is known that we have exactly ¢(r)(q — 1)/r choices for
po. We denote this set by €.

+ Notice that we already have enough to prescribe the
coefficients of the polynomials in IZ,.

Our next step is to move to the case of arbitrary A.
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Correlating IS, and 15,

Lemma
Suppose that [C], [D] € PGL(2, q) such that [C] ~ [D], then map

@ : Iy = 1o, [Fl = [UoF],

where U € GL(2,q) is such that [D] = [UCU™"], is a bijection.

Before proceeding, we observe that the above combined with
what we already know about 12, imply that 13, £ 0 < r|n’,
so from now on we assume that n’ = rn. Moreover, by utilizing
the above bijection, given that [A] ~ [B], we can write any
coefficient of Q € I4,, as a linear expression of the coefficients
of some P' € 15,.
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The coefficient of Q

It follows that the m-th coefficient of Q is

n—[m/r]
am=>_ &ipn_is
i=0

i.e. a linear expression of the high-degree coefficients of P,
where P is such that P/(X) = PR(X"). Further, we define p as the
largest i such that §; # 0 and r | i. If such p does not exist,
then gm = 0. If y = 0, then g, = 6oc for any ¢ € €. So, from
now we assume that p > 1.
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Completion of the proof

With the latter in mind, we fix some ¢ € ¢ and seek irreducible
polynomials of degree n with py = ¢ that satisfy

>F ,6ipi = ck for some k € Fq. Next, we fix 0 : G, — Fq,

H— Y I 6;h; and set

wi= > A(H) > 1.

HEG“,'] Pely
P=cHF.' (mod X#*1)

It is now clear that if w # 0, then there exists some P € I, with
po € € that satisfies Y ' | ;p; = ke, which in turn implies the
existence of some Q € Iﬁ, with gm = K.
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Completion of the proof

« Working as before, we get the following condition.

9

n/2 > 9 NgH+M/2 _
q"c >2n(p+1)q +q+1

« This is satisfied for all 1 < p < n/2, for g > 31 and for
n > 47.
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Theorem

Let [A] € PGL(2, q) be such that [A] ~ [(49)] for some a € Fq
of orderr >1and 0 <m < n'. First, 1, £ 0 < r|n, so
assume n’ = rn. Further, set

€= {x € F | ged(r, (q — 1)/ ord(x)) = 1}. If [A] = [(89)],
then for any P € A, pm = 0 for all r { m and p, € &, while for
any k € Fq there exists some P € I3, with p, = K for any

m # 0, r | m, while the same holds form = 0 and k € €. If
[A] # [($9)], compute a, c,d € Fq such that [A] = [UBU™),
where B= (49) and U= (29) and for0 <i<n—[m/r], set
& := (" Damcn=Dr-mgir_ et iy .= max{j : §; # 0}. In
particular y < n—[m/r].
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Theorem (Cont.)

1. If u does not exist, then p,, = 0 for all P € I,

2. If y =0, then for all P € 1%, we have that pm = 6oc for
some ¢ € €. Conversely, there exists some P € 13, with
pm = 6oc forallc € €.

3. If 0 < p < n/2 then there exists some P € I3, with py, = Kk

for all k € Fg, given that n > 5 and q > 31 0or n > 47.
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FURTHER RESEARCH




Further research

1. Check what happens for small values of g and n.
2. Extend this to all matrices (not just lower-triangular).
3. Prescribe the low-degree coefficients.
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