## ON THE EXISTENCE OF PRIMITIVE COMPLETELY NORMAL BASES OF FINITE FIELDS

**Giorgos Kapetanakis** 

(Joint work with Theodoulos Garefalakis)

1<sup>st</sup> Congress of Greek Mathematicians - June, 2018

Sabancı University

## **MOTIVATION**

Let  $\mathbf{F}_q$  be the finite field of cardinality q and  $\mathbf{F}_{q^n}$  its extension of degree n, where q is a power of the prime p.

- A generator of  $(\mathbf{F}_{q^n}^*, \cdot)$  is called *primitive*.
- An  $\mathbf{F}_q$ -basis of  $\mathbf{F}_{q^n}$  of the form  $\{x, x^q, \dots, x^{q^{n-1}}\}$  is called normal and  $x \in \mathbf{F}_{q^n}$  normal over  $\mathbf{F}_q$ .
- It is well-known that primitive and normal elements exist for every *q* and *n*.

### Theorem (Primitive normal basis theorem)

Let q be a prime power and  $n \in N$ . There exists some  $x \in F_{q^n}$  that is simultaneously primitive and normal over  $F_q$ .

- Lenstra and Schoof (1987) provided the first proof.
- Cohen and Huczynska (2003) provided a computer-free proof with the introduction of sieving techniques.
- Several generalizations have been investigated (Cohen-Hachenberger 1999, Cohen-Huczynska 2010, Hsu-Nan 2011, K. 2013, K. 2014).

An element of  $\mathbf{F}_{q^n}$  that is simultaneously normal over  $\mathbf{F}_{q^l}$  for all  $l \mid n$  is called *completely normal over*  $\mathbf{F}_q$ .

Theorem (Completely normal basis theorem)

For every q and n, there exists a completely normal element of  $\mathbf{F}_{q^n}$  over  $\mathbf{F}_q$ .

- Initially proved by Blessenohl and Johnsen (1986).
- Hachenberger (1994) gave a simplified proof.

Motivated by the primitive normal basis theorem, Morgan and Mullen conjectured the following:

#### Conjecture (Morgan-Mullen, 1996)

Let q be a prime power and n a positive integer. There exists some  $x \in \mathbf{F}_{q^n}$  that is simultaneously primitive and completely normal over  $\mathbf{F}_q$ .

- Morgan and Mullen (1996) gave examples for  $q \le 97$  and  $q^n < 10^{50}$  by computer search.
- Hachenberger (1997) characterized *completely basic* extensions, that is extensions, that every normal element is also completely normal.
- Hachenberger (2001) settled the case when  $\mathbf{F}_{q^n}$  is a regular extension over  $\mathbf{F}_q$ , given that  $4 \mid (q 1)$ , q odd and n even.  $\mathbf{F}_{q^n}$  is a *regular extension over*  $\mathbf{F}_q$  if n and  $\operatorname{ord}_{v(n')}(q)$  are co-prime, where v(n') is the square-free part of the p-free part of n.

- Blessenohl (2005) settled the case  $n = 2^l$ ,  $n \mid (q^2 1)$ ,  $l \ge 3$  and  $q \equiv 3 \pmod{4}$ .
- Hachenberger (2010) provided lower bounds for the number of primitive and completely normal elements when *n* is a prime power.
- Hachenberger (2012) extended his results to all regular extensions.

Recently, with elementary methods, the following was shown.

Theorem (Hachenberger, 2016)

- 1. Assume that  $q \ge n^{7/2}$  and  $n \ge 7$ . Then  $PCN_q(n) > 0$ .
- 2. If  $q \ge n^3$  and  $n \ge 37$ , then  $PCN_q(n) > 0$ .

#### Remark

The conjecture is still open

# In this work, we employ character sum techniques and prove the following.

#### Theorem (Garefalakis-K.)

Let  $n \in \mathbb{N}$  and q a power of the prime p, such that q > m, where  $n = p^{\ell}m$  and gcd(p, m) = 1. Then  $PCN_q(n) > 0$ .

## PRELIMINARIES

- $(\mathbf{F}_{q^n}^*, \cdot)$  can be seen as a **Z**-module under the rule  $r \circ x := x^r$ .  $(\mathbf{F}_{q^n}, +)$  can be seen as an  $\mathbf{F}_q[X]$ -module, under the rule  $F \circ x := \sum_{i=0}^m f_i x^{q^i}$ .
- The fact that primitive and normal elements always exist, implies that both modules are cyclic.
- It is now clear that we are interested in characterizing generators of cyclic modules over Euclidean domains.

## Vinogradov's formula

## Proposition (Vinogradov's formula)

The characteristic function for the R-generators of  ${\mathcal M}$  is

$$\omega(x) := \theta(r) \sum_{d|r} \frac{\mu(d)}{\varphi(d)} \sum_{\chi \in \widehat{\mathcal{M}}, \text{ ord}(\chi) = d} \chi(x).$$

The Euler function is  $\varphi(d) = |(R/dR)^*|$ , the Möbius function is

$$\mu(d) = \begin{cases} (-1)^k, & d \text{ is a product of } k \text{ distinct irreducibles,} \\ 0, & \text{otherwise} \end{cases}$$

and  $\theta(d) = \frac{\varphi(d')}{|(R/d'R)|}$ , where d' is the square-free part of d.

1. For  $l \mid n$ , the characteristic function of normal elements of  $\mathbf{F}_{q^n}$  over  $\mathbf{F}_{q^l}$  is

$$\Omega_l(x) := \theta_l(X^{n/l} - 1) \sum_{F \mid X^{n/l} - 1} \frac{\mu_l(F)}{\varphi_l(F)} \sum_{\psi \in \widehat{\mathbf{F}_{q^n}}, \text{ ord}_l(\psi) = F} \psi(x).$$

2. The characteristic function for primitive elements of  $\mathbf{F}_{q^n}$  is

$$\omega(x) := \theta(q^n - 1) \sum_{d \mid q'} \frac{\mu(d)}{\varphi(d)} \sum_{\chi \in \widehat{\mathbf{F}_{q^n}^*}, \text{ ord}(\chi) = d} \chi(x).$$

## **SUFFICIENT CONDITIONS**

#### Proposition

Let q be a prime power and  $n \in \mathbf{N}$ , then

$$|\operatorname{PCN}_q(n) - heta(q')\operatorname{CN}_q(n)| \le q^{n/2}W(q')W_{l_1}(F'_{l_1})\cdots W_{l_k}(F'_{l_k}) heta(q') heta(\mathbf{q}),$$

where W(r) is the number of divisors of r,  $W_{l_i}(F'_{l_i})$  the number of monic divisors of  $F'_{l_i}$  in  $\mathbf{F}_{q^{l_i}}[X]$ , q' the square-free part of  $q^n - 1$ ,  $F'_{l_i}$  the square-free part of  $X^{n/l_i} - 1 \in \mathbf{F}_{q^{l_i}}[X]$  and  $CN_q(n)$ the number of completely normal elements of  $\mathbf{F}_{q^n}$  over  $\mathbf{F}_q$ .

$$\begin{aligned} \mathsf{PCN}_{q}(n) &= \sum_{x \in \mathbf{F}_{q^{n}}} \omega(x) \Omega_{l_{1}}(x) \cdots \Omega_{l_{k}}(x) \\ &= \theta(q') \theta(\mathbf{q}) \sum_{\chi} \sum_{\psi_{1}, \dots, \psi_{k}} \frac{\mu(\operatorname{ord}(\chi))}{\varphi(\operatorname{ord}(\chi))} \prod_{i=1}^{k} \frac{\mu_{l_{i}}(\operatorname{ord}_{l_{i}}(\psi_{i}))}{\varphi_{l_{i}}(\operatorname{ord}_{l_{i}}(\psi_{i}))} \\ &\sum_{x \in \mathbf{F}_{q^{n}}} \psi_{1} \cdots \psi_{k}(x) \chi(x) \\ &= \theta(q') \theta(\mathbf{q}) (S_{1} + S_{2}), \end{aligned}$$

where the term  $S_1$  corresponds to  $\chi = \chi_0$  and  $S_2$  to  $\chi \neq \chi_0$ .

## Sketch of the proof (cont.)

$$S_1 = \sum_{\psi_1, \dots, \psi_k} \prod_{i=1}^k \frac{\mu_{l_i}(\operatorname{ord}_{l_i}(\psi_i))}{\varphi_{l_i}(\operatorname{ord}_{l_i}(\psi_i))} \sum_{x \in \mathbf{F}_{q^n}} \psi_1 \cdots \psi_k(x) = \frac{\operatorname{CN}_q(n)}{\theta(\mathbf{q})}$$

and using character sum estimates, we get

$$|S_2| \le q^{n/2} (W(q') - 1) \prod_{i=1}^k W_{l_i}(F'_{l_i}).$$

The result follows.

## Corollary

If  $CN_q(n) \ge q^{n/2}W(q')W_{l_1}(F'_{l_1})\cdots W_{l_k}(F'_{l_k})\theta(\mathbf{q}),$  then  $PCN_q(n) > 0.$ 

## A lower bound for $CN_q(n)$

#### Proposition

Let q be a power of the prime p and  $n \in \mathbf{N}$ , then

$$\operatorname{CN}_q(n) \ge q^n \left(1 - \frac{n(q+1)}{q^2}\right),$$

while for  $n = p^{\ell}m$ , with  $\ell \ge 1$  and (m, p) = 1, we get

$$\mathsf{CN}_q(n) \geq \begin{cases} q^n \left( 1 - m \left( \frac{1}{q} + \frac{1}{q^2} + \frac{1}{q^p} + \frac{4}{q^{2p}} \right) \right), & \text{for } p > 2 \\ q^n \left( 1 - m \left( \frac{1}{q} + \frac{1}{q^2} + \frac{2}{3q^3} + \frac{3}{q^4} \right) \right), & \text{for } p = 2. \end{cases}$$

The bounds are meaningful for q > m.

## **PROOF OF THE MAIN THEOREM**

Since  $\prod_{i=1}^k W_{l_i}(F'_{l_i}) \theta_{l_i}(F'_{l_i}) < 2^{t(n)-1}$ , where  $t(n) := \sum_{d|n} d$ , it suffices to show that

 $\operatorname{CN}_q(n) \geq W(q')2^{t(n)-1}.$ 

#### Lemma

For  $r \in \mathbf{N}$ ,  $W(r) \leq c_{r,a}r^{1/a}$ , where  $c_{r,a} = 2^{s}/(p_{1}\cdots p_{s})^{1/a}$  and  $p_{1},\ldots,p_{s}$  the prime divisors  $\leq 2^{a}$  of r. Also,  $d_{r} = c_{r,8} < 4514.7$ .

#### Theorem (Robin, 1984)

$$t(n) \leq e^{\gamma} n \log \log n + rac{0.6483n}{\log \log n}, \ \forall n \geq 3,$$

where y is the Euler-Mascheroni constant.

We distinguish three separate cases:

1. 
$$(n, p) = 1$$
.

- 2. (n, p) > 1 and  $p \neq 2$ .
- 3. (n, p) > 1 and p = 2.

For each case we roughly follow the below steps:

- Deal with all but a finite number of possible exceptions with the generic bounds for the various W's.
- 2. For the possible exceptions, try validating the conditions after replacing all quantities with their exact values.
- 3. Check if the remaining pairs (q, n) correspond to a completely basic extension.

The above strategy worked for all but the below possible exception pairs (q, n):

| n  | q  | n  | q  | n  | q  | n  | q  | n  | q  | n  | q  |
|----|----|----|----|----|----|----|----|----|----|----|----|
| 6  | 8  | 6  | 11 | 6  | 17 | 6  | 23 | 6  | 29 | 8  | 11 |
| 8  | 19 | 12 | 17 | 12 | 23 | 12 | 29 | 12 | 41 | 24 | 29 |
| 24 | 41 | 21 | 9  | 12 | 8  | 20 | 8  | 24 | 8  |    |    |

But for all of them Morgan and Mullen have provided examples of primitive and completely normal elements. The proof is complete.



The restriction q > m is a consequence of our lower bound for  $CN_q(n)$  and the fact that we were unable to fully handle the behavior of the additive characters.

- 1. Tighter bounds for  $CN_q(n)$  or
- 2. more efficient handling of the character sums

would improve our results.

This work is available at: arXiv:1709.03141 [math.NT] DOI:10.1016/j.jpaa.2018.05.005

## Thank You!