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Motivation



Definitions

Let Fq be the finite field of cardinality q and Fqn its extension
of degree n, where q is a power of the prime p.

• A generator of (F∗qn , ·) is called primitive.
• An Fq-basis of Fqn of the form {x, xq, . . . , xqn−1} is called
normal and x ∈ Fqn normal over Fq.

• It is well-known that primitive and normal elements exist
for every q and n.
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The primitive normal basis theorem

Theorem (Primitive normal basis theorem)
Let q be a prime power and n ∈ N. There exists some x ∈ Fqn
that is simultaneously primitive and normal over Fq.

• Lenstra and Schoof (1987) provided the first proof.
• Cohen and Huczynska (2003) provided a computer-free
proof with the introduction of sieving techniques.

• Several generalizations have been investigated
(Cohen-Hachenberger 1999, Cohen-Huczynska 2010,
Hsu-Nan 2011, K. 2013, K. 2014).

3/22



The completely normal basis theorem

An element of Fqn that is simultaneously normal over Fql for
all l | n is called completely normal over Fq.

Theorem (Completely normal basis theorem)
For every q and n, there exists a completely normal element
of Fqn over Fq.

• Initially proved by Blessenohl and Johnsen (1986).
• Hachenberger (1994) gave a simplified proof.
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The Morgan-Mullen conjecture

Motivated by the primitive normal basis theorem, Morgan and
Mullen conjectured the following:

Conjecture (Morgan-Mullen, 1996)
Let q be a prime power and n a positive integer. There exists
some x ∈ Fqn that is simultaneously primitive and completely
normal over Fq.
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Known results

• Morgan and Mullen (1996) gave examples for q ≤ 97 and
qn < 1050 by computer search.

• Hachenberger (1997) characterized completely basic
extensions, that is extensions, that every normal element
is also completely normal.

• Hachenberger (2001) settled the case when Fqn is a
regular extension over Fq, given that 4 | (q− 1), q odd and
n even. Fqn is a regular extension over Fq if n and
ordν(n′)(q) are co-prime, where ν(n′) is the square-free
part of the p-free part of n.
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Known results

• Blessenohl (2005) settled the case n = 2l, n | (q2 − 1),
l ≥ 3 and q ≡ 3 (mod 4).

• Hachenberger (2010) provided lower bounds for the
number of primitive and completely normal elements
when n is a prime power.

• Hachenberger (2012) extended his results to all regular
extensions.
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Known results

Recently, with elementary methods, the following was shown.

Theorem (Hachenberger, 2016)

1. Assume that q ≥ n7/2 and n ≥ 7. Then PCNq(n) > 0.
2. If q ≥ n3 and n ≥ 37, then PCNq(n) > 0.

Remark
The conjecture is still open
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Our contribution

In this work, we employ character sum techniques and prove
the following.

Theorem (Garefalakis-K.)
Let n ∈ N and q a power of the prime p, such that q > m,
where n = pℓm and gcd(p,m) = 1. Then PCNq(n) > 0.
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Preliminaries



Module structure

• (F∗qn , ·) can be seen as a Z-module under the rule
r ◦ x := xr. (Fqn ,+) can be seen as an Fq[X]-module, under
the rule F ◦ x :=

∑m
i=0 fixq

i .
• The fact that primitive and normal elements always exist,
implies that both modules are cyclic.

• It is now clear that we are interested in characterizing
generators of cyclic modules over Euclidean domains.
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Vinogradov’s formula

Proposition (Vinogradov’s formula)
The characteristic function for the R-generators of M is

ω(x) := θ(r)
∑
d|r

μ(d)
φ(d)

∑
χ∈M̂, ord(χ)=d

χ(x).

The Euler function is φ(d) = |(R/dR)∗|, the Möbius function is

μ(d) =

(−1)k, d is a product of k distinct irreducibles,
0, otherwise

and θ(d) = φ(d′)
|(R/d′R)| , where d′ is the square-free part of d.
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Vinogradov’s formula

1. For l | n, the characteristic function of normal elements of
Fqn over Fql is

Ωl(x) := θl(Xn/l − 1)
∑

F|Xn/l−1

μl(F)
φl(F)

∑
ψ∈F̂qn , ordl(ψ)=F

ψ(x).

2. The characteristic function for primitive elements of Fqn is

ω(x) := θ(qn − 1)
∑
d|q′

μ(d)
φ(d)

∑
χ∈F̂∗qn , ord(χ)=d

χ(x).
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Sufficient conditions



Main estimate

Proposition
Let q be a prime power and n ∈ N, then

|PCNq(n)− θ(q′) CNq(n)| ≤
qn/2W(q′)Wl1(F

′
l1) · · ·Wlk(F

′
lk)θ(q

′)θ(q),

where W(r) is the number of divisors of r, Wli(F
′
li) the number

of monic divisors of F′li in Fqli [X], q′ the square-free part of
qn − 1, F′li the square-free part of X

n/li − 1 ∈ Fqli [X] and CNq(n)
the number of completely normal elements of Fqn over Fq.
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Sketch of the proof

PCNq(n) =
∑
x∈Fqn

ω(x)Ωl1(x) · · ·Ωlk(x)

=θ(q′)θ(q)
∑
χ

∑
ψ1,...,ψk

μ(ord(χ))
φ(ord(χ))

k∏
i=1

μli(ordli(ψi))

φli(ordli(ψi))∑
x∈Fqn

ψ1 · · ·ψk(x)χ(x)

=θ(q′)θ(q)(S1 + S2),

where the term S1 corresponds to χ = χ0 and S2 to χ ̸= χ0.
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Sketch of the proof (cont.)

S1 =
∑

ψ1,...,ψk

k∏
i=1

μli(ordli(ψi))

φli(ordli(ψi))

∑
x∈Fqn

ψ1 · · ·ψk(x) =
CNq(n)
θ(q)

and using character sum estimates, we get

|S2| ≤ qn/2(W(q′)− 1)
k∏
i=1

Wli(F
′
li).

The result follows.
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A useful corollary

Corollary
If

CNq(n) ≥ qn/2W(q′)Wl1(F
′
l1) · · ·Wlk(F

′
lk)θ(q),

then PCNq(n) > 0.
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A lower bound for CNq(n)

Proposition

Let q be a power of the prime p and n ∈ N, then

CNq(n) ≥ qn
(
1− n(q+ 1)

q2
)
,

while for n = pℓm, with ℓ ≥ 1 and (m,p) = 1, we get

CNq(n) ≥

qn
(
1−m

(
1
q + 1

q2 +
1
qp +

4
q2p

))
, for p > 2

qn
(
1−m

(
1
q + 1

q2 +
2
3q3 +

3
q4
))

, for p = 2.

The bounds are meaningful for q > m.
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Proof of the main theorem



Since
∏k

i=1Wli(F
′
li)θli(F

′
li) < 2t(n)−1, where t(n) :=

∑
d|n d, it

suffices to show that

CNq(n) ≥ W(q′)2t(n)−1.

Lemma
For r ∈ N, W(r) ≤ cr,ar1/a, where cr,a = 2s/(p1 · · ·ps)1/a and
p1, . . . ,ps the prime divisors ≤ 2a of r. Also, dr = cr,8 < 4514.7.

Theorem (Robin, 1984)

t(n) ≤ eγn log log n+
0.6483n
log log n , ∀n ≥ 3,

where γ is the Euler-Mascheroni constant.
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We distinguish three separate cases:

1. (n,p) = 1.
2. (n,p) > 1 and p ̸= 2.
3. (n,p) > 1 and p = 2.
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For each case we roughly follow the below steps:

1. Deal with all but a finite number of possible exceptions
with the generic bounds for the various W’s.

2. For the possible exceptions, try validating the conditions
after replacing all quantities with their exact values.

3. Check if the remaining pairs (q,n) correspond to a
completely basic extension.
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The above strategy worked for all but the below possible
exception pairs (q,n):

n q n q n q n q n q n q
6 8 6 11 6 17 6 23 6 29 8 11
8 19 12 17 12 23 12 29 12 41 24 29
24 41 21 9 12 8 20 8 24 8

But for all of them Morgan and Mullen have provided
examples of primitive and completely normal elements.

The proof is complete.
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Conclusions



Further research

The restriction q > m is a consequence of our lower bound
for CNq(n) and the fact that we were unable to fully handle
the behavior of the additive characters.

1. Tighter bounds for CNq(n) or
2. more efficient handling of the character sums

would improve our results.
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This work is available at:
arXiv:1709.03141 [math.NT]

DOI:10.1016/j.jpaa.2018.05.005

Thank You!
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