
On a conjecture of Morgan and Mullen

Giorgos Kapetanakis
(Joint work with Theodoulos Garefalakis)

Fq13 - June 7, 2017

Sabancı University

1/22



Motivation



Definitions

Let Fq be the finite field of cardinality q and Fqn its extension
of degree n, where q is a power of the prime p.

• A generator of (F∗qn , ·) is called primitive.
• An Fq-basis of Fqn of the form {x, xq, . . . , xqn−1} is called
normal and x ∈ Fqn normal over Fq.

• It is well-known that primitive and normal elements exist
for every q and n.
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The primitive normal basis theorem

Theorem (Primitive normal basis theorem)
Let q be a prime power and n ∈ N. There exists some x ∈ Fqn
that is simultaneously primitive and normal over Fq.

• Lenstra and Schoof (1987) provided the first proof.
• Cohen and Huczynska (2003) provided a computer-free
proof with the introduction of sieving techniques.

• Several generalizations have been investigated
(Cohen-Hachenberger 1999, Cohen-Huczynska 2010,
Hsu-Nan 2011, K. 2013, K. 2014).
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The completely normal basis theorem

An element of Fqn that is simultaneously normal over Fql for
all l | n is called completely normal over Fq.

Theorem (Completely normal basis theorem)
For every q and n, there exists a completely normal basis of
Fqn over Fq.

• Initially proved by Blessenohl and Johnsen (1986).
• Hachenberger (1994) gave a simplified proof.

4/22



The Morgan-Mullen conjecture

Morgan and Mullen conjectured the following:

Conjecture (Morgan-Mullen, 1996)
Let q be a prime power and n a positive integer. There exists
some x ∈ Fqn that is simultaneously primitive and completely
normal over Fq.

5/22



Known results

• Morgan and Mullen (1996) gave examples for q ≤ 97 and
qn < 1050 by computer search.

• Hachenberger (2001) settled the case when Fqn is a
regular extension over Fq, given that 4 | (q− 1), q odd and
n even. Fqn is a regular extension over Fq if n and
ordν(n′)(q) are co-prime, where ν(n′) is the square-free
part of the p-free part of n.

• Blessenohl (2005) settled the case n = 2l, n | (q2 − 1),
l ≥ 3 and q ≡ 3 (mod 4).

• Hachenberger (2012) extended his results to all regular
extensions.
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Known results

Let PCNq(n) denote the number of primitive and completely
normal elements of Fqn over Fq. Hachenberger (2010) proved:

1. PCNq(2l) ≥ 4(q− 1)2l−2 , if q ≡ 3 (mod 4) and l ≥ e+ 3
(where e is maximal such that 2e | (q2 − 1)), or if q ≡ 1
(mod 4) and l ≥ 5.

2. PCNq(rl) ≥ r2(q− 1)rl−2 , if r ̸= p is an odd prime and l ≥ 2.
3. PCNq(rl) ≥ r(q− 1)rl−1 · φ(qrl−1 − 1), if r ≥ 7 and r ̸= p is a
prime and l ≥ 2.

4. PCNq(pl) ≥ pqpl−1−1(q− 1), if l ≥ 2.
5. PCNq(pl) ≥ pqpl−1−1(q− 1) ·φ(qpl−1 − 1), if p ≥ 7 and l ≥ 2.
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Known results

Recently, with elementary methods, the following was shown.

Theorem (Hachenberger, 2016)

1. Assume that q ≥ n7/2 and n ≥ 7. Then PCNq(n) > 0.
2. If q ≥ n3 and n ≥ 37, then PCNq(n) > 0.

Remark
The conjecture is still open
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Our contribution

In this work, we employ character sum techniques and prove
the following.

Theorem (Garefalakis-K.)
Let n ∈ N and q a prime power such that q > n, then
PCNq(n) > 0.
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Preliminaries



Module structure

• (F∗qn , ·) can be seen as a Z-module under the rule
r ◦ x := xr. (Fqn ,+) can be seen as an Fq[X]-module, under
the rule F ◦ x :=

∑m
i=0 fixq

i .
• The fact that primitive and normal elements always exist,
implies that both modules are cyclic.

• It is now clear that we are interested in characterizing
generators of cyclic modules over Euclidean domains.
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Vinogradov’s formula

Proposition (Vinogradov’s formula)
The characteristic function for the R-generators ofM is

ω(x) := θ(r)
∑
d|r

μ(d)
φ(d)

∑
χ∈M̂, ord(χ)=d

χ(x).

The Euler function is φ(d) = |(R/dR)∗|, the Möbius function is

μ(d) =

(−1)k, d is a product of k distinct irreducibles,
0, otherwise

and θ(d) = φ(d′)
|(R/d′R)| , where d′ is the square-free part of d.
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Vinogradov’s formula

1. For l | n, the characteristic function of normal elements of
Fqn over Fql is

Ωl(x) := θl(Xn/l − 1)
∑

F|Xn/l−1

μl(F)
φl(F)

∑
ψ∈F̂qn , ordl(ψ)=F

ψ(x).

2. The characteristic function for primitive elements of Fqn is

ω(x) := θ(qn − 1)
∑
d|q′

μ(d)
φ(d)

∑
χ∈F̂∗qn , ord(χ)=d

χ(x).
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Sufficient conditions



Main estimate

Proposition
Let q be a prime power and n ∈ N, then

|PCNq(n)− θ(q′) CNq(n)| ≤
qn/2W(q′)Wl1(F

′
l1) · · ·Wlk(F

′
lk)θ(q

′)θ(q),

where W(r) is the number of divisors of r, Wli(F
′
li) the number

of monic divisors of F′li in Fqli [X], q
′ the square-free part of

qn − 1, F′li the square-free part of X
n/li − 1 ∈ Fqli [X] and CNq(n)

the number of completely normal elements of Fqn over Fq.
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Sketch of the proof

PCNq(n) =
∑
x∈Fqn

(
ω(x)Ωl1(x) · · ·Ωlk(x)

)

=θ(q′)θ(q)
∑
χ

∑
ψ1,...,ψk

μ(ord(χ))
φ(ord(χ))

k∏
i=1

μli(ordli(ψi))
φli(ordli(ψi))∑

x∈Fqn
ψ1 · · ·ψk(x)χ(x)

=θ(q′)θ(q)(S1 + S2),

where the term S1 corresponds to χ = χ0 and S2 to χ ̸= χ0.
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Sketch of the proof (cont.)

S1 =
∑

ψ1,...,ψk

k∏
i=1

μli(ordli(ψi))
φli(ordli(ψi))

∑
x∈Fqn

ψ1 · · ·ψk(x) =
CNq(n)
θ(q)

and using character sum estimates, we get

|S2| ≤ qn/2(W(q′)− 1)
k∏
i=1

Wli(F
′
li).

The result follows.
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A useful corollary

Corollary
If

CNq(n) ≥ qn/2W(q′)Wl1(F
′
l1) · · ·Wlk(F

′
lk)θ(q),

then PCNq(n) > 0.
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A lower bound for CNq(n)

Proposition

Let q be a prime power and n ∈ N. Then the following bounds
hold

CNq(n) ≥ qn
1−∑

d|n

(
1− φd(Xn/d − 1)

qn

)
CNq(n) ≥ qn

(
1− n(q+ 1)

q2

)
.

We note that the second bound is meaningful for q ≥ n+ 1,
which are the cases of interest in this work.
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Proof of the main theorem



Since
∏k
i=1Wli(F

′
li)θli(F

′
li) < 2t(n)−1, where t(n) :=

∑
d|n d, it

suffices to show that

qn/2
(
1− n(q+ 1)

q2

)
≥ W(q′)2t(n)−1.

Lemma
For r ∈ N, W(r) ≤ cr,ar1/a, where cr,a = 2s/(p1 · · ·ps)1/a and
p1, . . . ,ps the prime divisors ≤ 2a of r. Also, dr = cr,8 < 4514.7.

Theorem (Robin, 1984)

t(n) ≤ eγn log log n+
0.6483n
log log n , ∀n ≥ 3,

where γ is the Euler-Mascheroni constant.
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Therefore, a condition is:

q3n/8
(
1− n(q+ 1)

q2

)
> 4514.7 · 2n

(
log log n·e0.558+ 0.6483

log log n

)
−1
.

• This is satisfied for all q ≥ n+ 1, given that n > 1016.
• Within the range 2 ≤ n ≤ 1016 it is satisfied for all but 49
values of n, if we substitute q by the least prime power
> n, t(n) by its exact value and exclude the primes n.

• For those values for n, we compute the smallest prime
power q that satisfies our condition. In this region, there
is a total of 1868 pairs (n,q) to deal with.
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Another condition would be

qn/2
1−∑

d|n

(
1− φd(Xn/d − 1)

qn

) > W(q′)
k∏
i=1

Wli(F
′
li)θli(F

′
li).

• This and the estimate W(q′) ≤ cq′,16qn/16 reduces the list
to 80 pairs. Calculating W(q′), reduces it to 65 pairs.

• Morgan and Mullen’s calculations reduce the list to 3
pairs (n,q). These pairs are (36, 37), (48, 49) and (60, 61).

• For (60, 61) and (48, 49) we employ Cohen and
Huczynska’s sieve (on the multiplicative part) and for
(36, 37) we find an example.

• The proof is complete.
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Conclusions



Outcome

• A step towards resolving Morgan and Mullen Conjecture
was taken. Our results, combined with the results of
Hachenberger (2010) prove this conjecture for q ≥ n.

• By using similar techniques, we generalized this result.

Theorem (Garefalakis-K.)
Let q a power of the prime p and l,m ∈ Z with l ≥ 0, m ≥ 1,
(m,p) = 1. Then PCNq(plm) > 0 provided that m < q.
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Further research

Remark
The restriction q > n is a consequence of our lower bound
for CNq(n). Tighter bounds for CNq(n) or more efficient
handling of the character sums would improve our results.

q n Lower bound Exact value
7 4 1630 1728
5 6 7165 8448
2 14 1666 6272

Our lower bound and the actual value of CNq(n) for some q and n
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Thank You!
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