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MOTIVATION



Let Fq be the finite field of cardinality g and Fgn its extension
of degree n, where g is a power of the prime p.
- A generator of (F,, ) is called primitive.

* An F4-basis of Fgn of the form {x,x9,... ,xq"_1} is called
normal and x € Fgn normal over Fy.

« It is well-known that primitive and normal elements exist
for every g and n.
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The primitive normal basis theorem

Theorem (Primitive normal basis theorem)
Let q be a prime power and n € N. There exists some x € Fgn
that is simultaneously primitive and normal over F,.

- Lenstra and Schoof (1987) provided the first proof.

« Cohen and Huczynska (2003) provided a computer-free
proof with the introduction of sieving techniques.

- Several generalizations have been investigated
(Cohen-Hachenberger 1999, Cohen-Huczynska 2010,
Hsu-Nan 2011, K. 2013, K. 2014).
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The completely normal basis theorem

An element of Fgn that is simultaneously normal over Fy for
all ['| nis called completely normal over Fy.

Theorem (Completely normal basis theorem)
For every g and n, there exists a completely normal basis of
Fqn over Fy.

- Initially proved by Blessenohl and Johnsen (1986).
- Hachenberger (1994) gave a simplified proof.
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The Morgan-Mullen conjecture

Morgan and Mullen conjectured the following:

Conjecture (Morgan-Mullen, 1996)

Let g be a prime power and n a positive integer. There exists
some x € Fgn that is simultaneously primitive and completely
normal over Fy.
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Known results

- Morgan and Mullen (1996) gave examples for g < 97 and
q" < 10°° by computer search.

- Hachenberger (2001) settled the case when Fgn is a
regular extension over Fg, given that 4 | (g — 1), g odd and
n even. Fgn is a regular extension over Fq if n and
ordy(n)(q) are co-prime, where v(n’) is the square-free
part of the p-free part of n.

- Blessenohl (2005) settled the case n = 2!, n | (g> — 1),
[>3and g =3 (mod 4).

« Hachenberger (2012) extended his results to all regular
extensions.
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Known results

Let PCNg(n) denote the number of primitive and completely
normal elements of F4» over Fq. Hachenberger (2010) proved:

1.

PCNg(2') > 4(g —1)* 7, ifg=3 (mod &) and [ > e +3
(where e is maximal such that 2¢ | (g% — 1)), orif g =1
(mod 4)and [ > 5.

. PCNg(rY) > r’(q — 1)”72, if r # pis anodd prime and [ > 2.
. PCNg(!) > r(@—1)""-(g"  —1),ifr>7andr#pisa

prime and [ > 2.
PCNg(p') > pg?'"—(q — 1), if [ > 2.
PCNg(p') > pg” (g —1)- @(g?" —1),ifp>7and [ > 2.
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Known results

Recently, with elementary methods, the following was shown.

Theorem (Hachenberger, 2016)

1. Assume that q > n’/? and n > 7. Then PCNg(n) > 0.
2. If g > n®and n > 37, then PCNg(n) > 0.

The conjecture is still open
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Our contribution

In this work, we employ character sum techniques and prove
the following.

Theorem (Garefalakis-K.)
Let n € N and q a prime power such that g > n, then
PCNg(n) > 0.
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PRELIMINARIES




Module structure

* (F3n,-) can be seen as a Z-module under the rule
rox:=x". (Fgn,+) can be seen as an Fy[X]-module, under
the rule Fox := "M fixd.

- The fact that primitive and normal elements always exist,

implies that both modules are cyclic.

- Itis now clear that we are interested in characterizing
generators of cyclic modules over Euclidean domains.
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Vinogradov's formula

Proposition (Vinogradov’s formula)
The characteristic function for the R-generators of M is

w(x)::G(r)Zf;((z)) > x).

dir XEM, ord(x)=d

The Euler function is ¢(d) = |(R/dR)*|, the Mébius function is

() (—1k, dis a product of k distinct irreducibles,
IJ =
0, otherwise

and 6(d) = ‘("J/(ig,/,)?)l, where d’ is the square-free part of d.
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Vinogradov's formula

1. For [ | n, the characteristic function of normal elements of
Fgn over Fg is

o) = B 1) 3 ’; S w.

Fxnir wer?n, ord () =F

2. The characteristic function for primitive elements of Fgn is

w(x) - 0@ “ S X

d|q XE@, ord(x)=d
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SUFFICIENT CONDITIONS




Proposition
Let g be a prime power and n € N, then

| PCNg(n) — 6(q') CNg(n)| <
q"*W(q" )W, (F,) - - Wi, (F,,)8(q)8(q),
where W(r) is the number of divisors of r, W,i(F;I_) the number
of monic divisors of F;i in Foi [X], g’ the square-free part of

q" — 1, F| the square-free part of X"/ —1 € F ;[X] and CNq(n)
the number of completely normal elements of Fqn over Fy.
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Sketch of the proof

PCNg(n) = Z (WX)Qp(x) -+ Qy, (X))

xqun
e u(ord(x)) v My (ordy ()
=6(q")6(q) ZX: %;wk o(ord(x) ,1} 2, (ordy (1)
D> Wi wR0X ()
XEFqn

=6(q")8(q)(S1 + S2),

where the term S; corresponds to x = x, and S; to x # Xo-
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Sketch of the proof (cont.)

CN (n)
5= ¥ [[Aled) o, :

Yoo W i=1 (pl( XEF e(q)
and using character sum estimates, we get

1S2] < q"2(W(g') — 1) HW, Fl.)-

The result follows.
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A useful corollary

Corollary

If
CNg(n) > q"2W(q" )W, (F,) - - W, (F} )6(q),

then PCNg(n) > 0.
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A lower bound for CN,(n)

Proposition

Let q be a prime power and n € N. Then the following bounds

hold
CNg(n) > q" (1 - (1 -l S 1)))
din q
CNg(n) = ¢" <1 - n(qq;r 1)> :

We note that the second bound is meaningful forg > n +1,
which are the cases of interest in this work.
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PROOF OF THE MAIN THEOREM




since [Ti, Wy (F} )8, (F,) < 2=, where t(n) := Y, d, it
suffices to show that

qn/z <1 o n(qq;'_ 1)) 2 W(q/)zt(n)—'l'

Lemma
Forre N, W(r) < crqr'/? where ¢, q = 2°/(p1---ps)"/® and

pa,...,Pps the prime divisors < 29 of r. Also, d; = ¢, < 4514.7.

Theorem (Robin, 1984)
0.6483n
log logn

t(n) < e'nloglogn + , Vn >3,

where y is the Euler-Mascheroni constant.
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Therefore, a condition is:

q*"® <1 - n(qq;r 1)> > 45147 . 2" (loElogne o+ G585 ) 1

« This is satisfied for all g > n + 1, given that n > 1016.

« Within the range 2 < n < 1016 it is satisfied for all but 49
values of n, if we substitute g by the least prime power
> n, t(n) by its exact value and exclude the primes n.

« For those values for n, we compute the smallest prime

power q that satisfies our condition. In this region, there
is a total of 1868 pairs (n, q) to deal with.
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Another condition would be

n/d _ k
g2 (1 = (1 _ (pd(anU)) >w(@)]] Wi, (F1.) 04, (F,)-
din

i=1

- This and the estimate W(q') < ¢4 16"/ reduces the list
to 80 pairs. Calculating W(q’), reduces it to 65 pairs.

» Morgan and Mullen’s calculations reduce the list to 3
pairs (n, q). These pairs are (36, 37), (48,49) and (60, 61).

« For (60, 61) and (48, 49) we employ Cohen and

Huczynska's sieve (on the multiplicative part) and for
(36,37) we find an example.

 The proof is complete.
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CONCLUSIONS




- A step towards resolving Morgan and Mullen Conjecture
was taken. Our results, combined with the results of
Hachenberger (2010) prove this conjecture for g > n.

- By using similar techniques, we generalized this result.
Theorem (Garefalakis-K.)

Let g a power of the prime pand [,m € Zwith [ >0, m > 1,
(m,p) = 1. Then PCN4(p'm) > 0 provided that m < q.
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Further research

The restriction g > n is a consequence of our lower bound
for CNg(n). Tighter bounds for CNg(n) or more efficient
handling of the character sums would improve our results.

g | n | Lower bound | Exact value
7|4 1630 1728
5|6 7165 8448
2| 14 | 1666 6272

Our lower bound and the actual value of CN4(n) for some g and n
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Thank You!
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