On a conjecture of Morgan and Mullen

Giorgos Kapetanakis
(Joint work with Theodoulos Garefalakis)
Fq13 - June 7, 2017
Sabancı University

Motivation

Definitions

Let \mathbf{F}_{q} be the finite field of cardinality q and $\mathbf{F}_{q^{n}}$ its extension of degree n, where q is a power of the prime p.

- A generator of ($\mathbf{F}_{q^{n}}^{*}$,) is called primitive.
- An $\mathbf{F}_{q^{-}}$-basis of $\mathbf{F}_{q^{n}}$ of the form $\left\{x, x^{q}, \ldots, x^{q^{n-1}}\right\}$ is called normal and $x \in \mathbf{F}_{q^{n}}$ normal over \mathbf{F}_{q}.
- It is well-known that primitive and normal elements exist for every q and n.

The primitive normal basis theorem

Theorem (Primitive normal basis theorem)

Let q be a prime power and $n \in \mathbf{N}$. There exists some $x \in \mathbf{F}_{q^{n}}$ that is simultaneously primitive and normal over \mathbf{F}_{q}.

- Lenstra and Schoof (1987) provided the first proof.
- Cohen and Huczynska (2003) provided a computer-free proof with the introduction of sieving techniques.
- Several generalizations have been investigated (Cohen-Hachenberger 1999, Cohen-Huczynska 2010, Hsu-Nan 2011, K. 2013, K. 2014).

The completely normal basis theorem

An element of $\mathbf{F}_{q^{n}}$ that is simultaneously normal over $\mathbf{F}_{q^{l}}$ for all $l \mid n$ is called completely normal over \mathbf{F}_{q}.

Theorem (Completely normal basis theorem)

For every q and n, there exists a completely normal basis of $\mathbf{F}_{q^{n}}$ over \mathbf{F}_{q}.

- Initially proved by Blessenohl and Johnsen (1986).
- Hachenberger (1994) gave a simplified proof.

The Morgan-Mullen conjecture

Morgan and Mullen conjectured the following:

Conjecture (Morgan-Mullen, 1996)

Let q be a prime power and n a positive integer. There exists some $x \in \mathbf{F}_{q^{n}}$ that is simultaneously primitive and completely normal over \mathbf{F}_{q}.

Known results

- Morgan and Mullen (1996) gave examples for $q \leq 97$ and $q^{n}<10^{50}$ by computer search.
- Hachenberger (2001) settled the case when $\mathbf{F}_{q^{n}}$ is a regular extension over \mathbf{F}_{q}, given that $4 \mid(q-1), q$ odd and n even. $\mathbf{F}_{q^{n}}$ is a regular extension over \mathbf{F}_{q} if n and $\operatorname{ord}_{v\left(n^{\prime}\right)}(q)$ are co-prime, where $v\left(n^{\prime}\right)$ is the square-free part of the p-free part of n.
- Blessenohl (2005) settled the case $n=2^{l}, n \mid\left(q^{2}-1\right)$, $l \geq 3$ and $q \equiv 3(\bmod 4)$.
- Hachenberger (2012) extended his results to all regular extensions.

Known results

Let $\mathrm{PCN}_{q}(n)$ denote the number of primitive and completely normal elements of $\mathbf{F}_{q^{n}}$ over \mathbf{F}_{q}. Hachenberger (2010) proved:

1. $\mathrm{PCN}_{q}\left(2^{l}\right) \geq 4(q-1)^{2^{l-2}}$, if $q \equiv 3(\bmod 4)$ and $l \geq e+3$ (where e is maximal such that $2^{e} \mid\left(q^{2}-1\right)$), or if $q \equiv 1$ $(\bmod 4)$ and $l \geq 5$.
2. $\operatorname{PCN}_{q}\left(r^{l}\right) \geq r^{2}(q-1)^{r-2}$, if $r \neq p$ is an odd prime and $l \geq 2$.
3. $\operatorname{PCN}_{q}\left(r^{l}\right) \geq r(q-1)^{r-1} \cdot \varphi\left(q^{r-1}-1\right)$, if $r \geq 7$ and $r \neq p$ is a prime and $l \geq 2$.
4. $\operatorname{PCN}_{q}\left(p^{l}\right) \geq p q^{p^{l-1}-1}(q-1)$, if $l \geq 2$.
5. $\operatorname{PCN}_{q}\left(p^{l}\right) \geq p q^{p^{l-1}-1}(q-1) \cdot \varphi\left(q^{p-1}-1\right)$, if $p \geq 7$ and $l \geq 2$.

Known results

Recently, with elementary methods, the following was shown.

Theorem (Hachenberger, 2016)

1. Assume that $q \geq n^{7 / 2}$ and $n \geq 7$. Then $\operatorname{PCN}_{q}(n)>0$.
2. If $q \geq n^{3}$ and $n \geq 37$, then $\operatorname{PCN}_{q}(n)>0$.

Remark

The conjecture is still open

Our contribution

In this work, we employ character sum techniques and prove the following.

Theorem (Garefalakis-K.)

Let $n \in \mathbf{N}$ and q a prime power such that $q>n$, then $\mathrm{PCN}_{q}(n)>0$.

Preliminaries

Module structure

- $\left(\mathbf{F}_{q^{n}}^{*}, \cdot\right)$ can be seen as a \mathbf{Z}-module under the rule $r \circ x:=x^{r} .\left(\mathbf{F}_{q^{n}},+\right)$ can be seen as an $\mathbf{F}_{q}[X]$-module, under the rule $F \circ x:=\sum_{i=0}^{m} f_{i} x^{q^{i}}$.
- The fact that primitive and normal elements always exist, implies that both modules are cyclic.
- It is now clear that we are interested in characterizing generators of cyclic modules over Euclidean domains.

Vinogradov's formula

Proposition (Vinogradov's formula)

The characteristic function for the R-generators of \mathcal{M} is

$$
\omega(x):=\theta(r) \sum_{d \mid r} \frac{\mu(d)}{\varphi(d)} \sum_{x \in \widehat{\mathcal{M}}, \operatorname{ord}(x)=d} x(x) .
$$

The Euler function is $\varphi(d)=\left|(R / d R)^{*}\right|$, the Möbius function is

$$
\mu(d)= \begin{cases}(-1)^{k}, & d \text { is a product of } k \text { distinct irreducibles, } \\ 0, & \text { otherwise }\end{cases}
$$

and $\theta(d)=\frac{\varphi\left(d^{\prime}\right)}{\left[\left(R / d^{\prime} R\right) \mid\right.}$, where d^{\prime} is the square-free part of d.

Vinogradov's formula

1. For $l \mid n$, the characteristic function of normal elements of $\mathbf{F}_{q^{n}}$ over $\mathbf{F}_{q^{\prime}}$ is

$$
\Omega_{l}(x):=\theta_{l}\left(x^{n / l}-1\right) \sum_{F \mid X^{n} / l-1} \frac{\mu_{l}(F)}{\varphi_{l}(F)} \sum_{\psi \in \widehat{F_{q}}, \text { ordl }(\psi)=F} \psi(x) .
$$

2. The characteristic function for primitive elements of $\mathbf{F}_{q^{n}}$ is

$$
\omega(x):=\theta\left(q^{n}-1\right) \sum_{d \mid q^{\prime}} \frac{\mu(d)}{\varphi(d)} \sum_{x \in \mathbb{F}_{q_{n}^{n}}^{n}, \operatorname{ord}(x)=d} x(x) .
$$

SUFFICIENT CONDITIONS

Main estimate

Proposition

Let q be a prime power and $n \in \mathbf{N}$, then

$$
\begin{aligned}
& \left|\operatorname{PCN}_{q}(n)-\theta\left(q^{\prime}\right) \mathrm{CN}_{q}(n)\right| \leq \\
& \quad q^{n / 2} W\left(q^{\prime}\right) W_{l_{1}}\left(F_{l_{1}}^{\prime}\right) \cdots W_{l_{k}}\left(F_{l_{k}}^{\prime}\right) \theta\left(q^{\prime}\right) \theta(\mathbf{q})
\end{aligned}
$$

where $W(r)$ is the number of divisors of $r, W_{l_{i}}\left(F_{l_{i}}^{\prime}\right)$ the number of monic divisors of $F_{l_{i}}^{\prime}$ in $\mathbf{F}_{q_{i}^{\prime}}[X]$, q^{\prime} the square-free part of $q^{n}-1, F_{l_{i}}^{\prime}$ the square-free part of $X^{n / l_{i}}-1 \in \mathbf{F}_{q^{\prime}}[X]$ and $\mathrm{CN}_{q}(n)$ the number of completely normal elements of $\mathbf{F}_{q^{n}}$ over \mathbf{F}_{q}.

Sketch of the proof

$$
\begin{aligned}
\operatorname{PCN}_{q}(n)= & \sum_{x \in F_{q^{n}}}\left(\omega(x) \Omega_{l_{1}}(x) \cdots \Omega_{l_{k}}(x)\right) \\
= & \theta\left(q^{\prime}\right) \theta(\mathbf{q}) \sum_{x} \sum_{\psi_{1, \ldots, \psi_{k}}} \frac{\mu(\operatorname{ord}(x))}{\varphi(\operatorname{ord}(x))} \prod_{i=1}^{k} \frac{\mu_{l_{i}}\left(\operatorname{ord}_{l_{i}}\left(\psi_{i}\right)\right)}{\varphi_{l_{i}}\left(\operatorname{ord}_{l_{i}}\left(\psi_{i}\right)\right)} \\
& \sum_{x \in \mathbf{F}_{q^{n}}} \psi_{1} \cdots \psi_{k}(x) X(x) \\
= & \theta\left(q^{\prime}\right) \theta(\mathbf{q})\left(S_{1}+S_{2}\right),
\end{aligned}
$$

where the term S_{1} corresponds to $\chi=x_{0}$ and S_{2} to $x \neq x_{0}$.

Sketch of the proof (cont.)

$$
S_{1}=\sum_{\psi_{1}, \ldots, \psi_{k}} \prod_{i=1}^{k} \frac{\mu_{l_{i}}\left(\operatorname{ord}_{l_{i}}\left(\psi_{i}\right)\right)}{\varphi_{l_{i}}\left(\operatorname{ord}_{l_{i}}\left(\psi_{i}\right)\right)} \sum_{x \in F_{q}{ }^{n}} \psi_{1} \cdots \psi_{k}(x)=\frac{\mathrm{CN}_{q}(n)}{\theta(\mathbf{q})}
$$

and using character sum estimates, we get

$$
\left|S_{2}\right| \leq q^{n / 2}\left(W\left(q^{\prime}\right)-1\right) \prod_{i=1}^{k} W_{l_{i}}\left(F_{l_{i}}^{\prime}\right) .
$$

The result follows.

A useful corollary

Corollary

If

$$
\mathrm{CN}_{q}(n) \geq q^{n / 2} W\left(q^{\prime}\right) W_{l_{1}}\left(F_{l_{1}}^{\prime}\right) \cdots W_{l_{k}}\left(F_{l_{k}}^{\prime}\right) \theta(\mathbf{q})
$$

then $\mathrm{PCN}_{q}(n)>0$.

A lower bound for $\mathrm{CN}_{q}(n)$

Proposition

Let q be a prime power and $n \in \mathbf{N}$. Then the following bounds hold

$$
\begin{aligned}
& \mathrm{CN}_{q}(n) \geq q^{n}\left(1-\sum_{d \mid n}\left(1-\frac{\varphi_{d}\left(X^{n / d}-1\right)}{q^{n}}\right)\right) \\
& \mathrm{CN}_{q}(n) \geq q^{n}\left(1-\frac{n(q+1)}{q^{2}}\right) .
\end{aligned}
$$

We note that the second bound is meaningful for $q \geq n+1$, which are the cases of interest in this work.

PROOF OF THE MAIN THEOREM

Since $\prod_{i=1}^{k} W_{l_{i}}\left(F_{l_{i}}^{\prime}\right) \theta_{l_{i}}\left(F_{l_{i}}^{\prime}\right)<2^{t(n)-1}$, where $t(n):=\sum_{d \mid n} d$, it suffices to show that

$$
q^{n / 2}\left(1-\frac{n(q+1)}{q^{2}}\right) \geq W\left(q^{\prime}\right) 2^{t(n)-1} .
$$

Lemma

For $r \in \mathbf{N}, W(r) \leq c_{r, a} r^{1 / a}$, where $c_{r, a}=2^{s} /\left(p_{1} \cdots p_{s}\right)^{1 / a}$ and p_{1}, \ldots, p_{s} the prime divisors $\leq 2^{a}$ of r. Also, $d_{r}=c_{r, 8}<4514.7$.

Theorem (Robin, 1984)

$$
t(n) \leq e^{\gamma} n \log \log n+\frac{0.6483 n}{\log \log n}, \forall n \geq 3,
$$

where γ is the Euler-Mascheroni constant.

Therefore, a condition is:

$$
q^{3 n / 8}\left(1-\frac{n(q+1)}{q^{2}}\right)>4514.7 \cdot 2^{n\left(\log \log n \cdot e^{0.558}+\frac{0.6483}{\log \log n}\right)-1} .
$$

- This is satisfied for all $q \geq n+1$, given that $n>1016$.
- Within the range $2 \leq n \leq 1016$ it is satisfied for all but 49 values of n, if we substitute q by the least prime power $>n, t(n)$ by its exact value and exclude the primes n.
- For those values for n, we compute the smallest prime power q that satisfies our condition. In this region, there is a total of 1868 pairs (n, q) to deal with.

Another condition would be

$$
q^{n / 2}\left(1-\sum_{d \mid n}\left(1-\frac{\varphi_{d}\left(X^{n / d}-1\right)}{q^{n}}\right)\right)>W\left(q^{\prime}\right) \prod_{i=1}^{k} W_{l_{i}}\left(F_{l_{i}^{\prime}}^{\prime}\right) \theta_{l_{i}}\left(F_{l_{i}^{\prime}}\right) .
$$

- This and the estimate $W\left(q^{\prime}\right) \leq c_{q^{\prime}, 16} q^{n / 16}$ reduces the list to 80 pairs. Calculating $W\left(q^{\prime}\right)$, reduces it to 65 pairs.
- Morgan and Mullen's calculations reduce the list to 3 pairs (n, q). These pairs are $(36,37),(48,49)$ and $(60,61)$.
- For $(60,61)$ and $(48,49)$ we employ Cohen and Huczynska's sieve (on the multiplicative part) and for $(36,37)$ we find an example.
- The proof is complete.

CONCLUSIONS

Outcome

- A step towards resolving Morgan and Mullen Conjecture was taken. Our results, combined with the results of Hachenberger (2010) prove this conjecture for $q \geq n$.
- By using similar techniques, we generalized this result.

Theorem (Garefalakis-K.)

Let q a power of the prime p and $l, m \in \mathbf{Z}$ with $l \geq 0, m \geq 1$,
$(m, p)=1$. Then $\operatorname{PCN}_{q}\left(p^{l} m\right)>0$ provided that $m<q$.

Further research

Remark

The restriction $q>n$ is a consequence of our lower bound for $\mathrm{CN}_{q}(n)$. Tighter bounds for $\mathrm{CN}_{q}(n)$ or more efficient handling of the character sums would improve our results.

q	n	Lower bound	Exact value
7	4	1630	1728
5	6	7165	8448
2	14	1666	6272

Our lower bound and the actual value of $\mathrm{CN}_{q}(n)$ for some q and n

Thank You!

