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MOTIVATION



Primitive elements

Let Fq be the finite field with q elements. The multiplicative
group F∗q is cyclic and a generator of this group is called
primitive.

Primitive elements are widely studied, mainly because of
their applications in practical situations such as the discrete
logarithm problem.

Vinogradov obtained a character sum formula for the
characteristic function of such elements. The latter can be
subsumed into a general concept of freeness, which is related
to the multiplicative structure of the elements of F∗q.
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Previous works

Many authors have explored the existence of primitive
elements with additional properties. The main tools are
Vinogradov’s formula and bounds on multiplicative character
sums such as Weil’s bound.

A common theme is studying pairs (α, F(α)) of primitive
elements, where F ∈ Fq(x). This is equivalent to looking at
Fq-rational points on the curve C : y = F(x) whose coordinates
are primitive, i.e., Fq-primitive points.

• Cohen, Oliveira e Silva, Trudgian, 2015: F general linear polynomial.
• Cohen, Oliveira e Silva, Sutherland, Trudgian, 2018, F(x) = x± 1/x.
• Booker, Cohen, Sutherland, Trudgian 2019, F general quadratic
polynomial.

• Carvalho, Guardieiro, Neumann, Tizziotti 2021, F = f1/f2.
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Freeness

For d | q− 1, some x ∈ Fq is d-free if x 6= βs for every 1 < s | d.

• Primitivity ≡ (q− 1)-freeness.
• α ∈ Fq is d-free ⇐⇒ gcd

(
d, q−1

ord(α)

)
= 1.

• Vinogradov’s formula can be adjusted to express the
characteristic function for d-free elements for every
d | q− 1.
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Our contribution

We consider the existence of Fq-primitive points on curves of
the form yn = F(x). An important example is that of elliptic
curves, y2 = f(x), where q is odd and f is a square-free cubic
polynomial.

We generalize the notion of freeness, also considering the
more general setting of finite cyclic groups. Such a concept
not only recovers the former description for primitive
elements but also the description of elements in F∗q with any
prescribed multiplicative order.

More specifically, we extend the idea of freeness to the
definition of (r,n)-free elements in a finite cyclic group.
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PRELIMINARIES



Characters

For a finite group G, a character of G is a homomorphism
η : G → C∗. The map g 7→ 1 ∈ C is the trivial character of G.
The characters of F∗q are the multiplicative characters of Fq.

If G is a cyclic group of order n with generator g, the set of
characters of G is a multiplicative group of order n, generated
by the character η : gk 7→ e 2π·i·k

n .
Theorem
Let η be a multiplicative character of Fq of order r > 1 and
F ∈ Fq[x] not of the form ag(x)r. Let z be the number of
distinct roots of F in its splitting field over Fq. Then∣∣∣∣∣∣

∑
c∈Fq

η(F(c))

∣∣∣∣∣∣ ≤ (z− 1)√q.
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n-primitive elements

An element of Fq of order (q− 1)/n is called n-primitive.
Recently these elements have started attracting attention due
to their theoretical interest and because we have efficient
algorithms that locate such elements. A challenging aspect of
their study is their characterization.
Lemma (Carlitz, 1952)
If N is a divisor of q− 1, the characteristic function for the set
of elements in Fq with multiplicative order N can be
expressed as

ON(ω) =
N

q− 1
∑
d|N

μ(d)
d

∑
ord(η)| d(q−1)

N

η(ω).
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n-primitive elements

By reordering of the terms in the latter, we obtain

ON(ω) =
φ(N)
N

∑
t|q−1

μ(t(n))
φ(t(n))

∑
ord(η)=t

η(ω), n =
q− 1
N ,

where a(b) = a
gcd(a,b) and the inner sum is over all the

multiplicative characters of order t.

The above expression of the characteristic function for
n-primitive elements is in fact a generalization of
Vinogradov’s formula.
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INTRODUCING (r,n)-FREE ELEMENTS



The definition

Definition

Let Q ∈ Z>0 and let CQ be a cyclic group of order Q. For n | Q
and r | Q/n, an element h ∈ CQ is (r,n)-free if

(i) ord(h)|Qn , i.e., h is in the subgroup CQ/n and
(ii) h is r-free in CQ/n, i.e., if h = gs with g ∈ CQ/n and s|r, then

s = 1.

1. (r, 1)-free elements in CQ are just the usual r-free
elements.

2. (Q/n,n)-free elements in CQ are exactly the elements of
order Q/n.
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Basic properties

Lemma
Let n | Q and r | Q/n. Then h ∈ CQ is (r,n)-free iff h = gn for
some g ∈ CQ but h is not of the form gnp0 with g0 ∈ CQ, for
every prime divisor p of r. In particular, h ∈ CQ is (r,n)-free iff
gcd

(
rn, Q

ord(h)

)
= n.

The following is an obvious consequence of the above.
Lemma

Let n be a divisor of Q and r a divisor of Q/n. If r∗ is the
square-free part of r, then an element of CQ is (r,n)-free if
and only if it is (r∗,n)-free.

It follows that we may assume that r is square-free.
10/26



Characterizing (r,n)-free elements

Next, using the orthogonality relations, we prove that

Ir,n(h) :=
φ(r)
rn

∑
t|rn

μ(t(n))
φ(t(n))

∑
ord(η)=t

η(h), h ∈ CQ.

is a character-sum expression of the characteristic function
for (r,n)-free elements of CQ. Note that this is a generalization
of Vinogradov’s formula for (r,n)-free elements.
Proposition

Let n | Q and r | Q/n. If h ∈ CQ, then

Ir,n(h) =

1, if h is (r,n)-free,
0, otherwise.
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(r,n)-FREENESS THROUGH POLYNOMIAL
VALUES



Main condition

For f, F ∈ Fq[x], we study the number of pairs (f(y), F(y)) such
that f(y) is (r,n)-free and F(y) is (R,N)-free with y ∈ Fq.

1. It is only interesting to explore the case where q− 1 has
proper divisors, that is, q ≥ 5.

2. We avoid pathological situations by imposing the
following mild condition: f, F ∈ Fq[x] are nonconstant
squarefree polynomials such that f/F is not a constant.
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Main condition

Theorem
Fix q ≥ 5, let n,N be divisors of q− 1 and let r | q−1

n and
R | q−1

N . Let f, F ∈ Fq[x] be nonconstant squarefree such that
f/F is non-constant and let D+ 1 ≥ 2 be the number of
distinct roots of fF over its splitting field. Then the number
Nf,F = Nf,F(r,n,R,N) of elements θ ∈ Fq such that f(θ) is
(r,n)-free and F(θ) is (R,N)-free satisfies

Nf,F =
φ(r)φ(R)
rnRN (q+ H(r,n,R,N)) ,

with |H(r,n,R,N)| ≤ DnNW(r)W(R)q1/2.
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Main condition

Corollary
Let q, r,R,n,N, f, F and D be as in the last theorem. If

q1/2 ≥ DnNW(r)W(R),

then Nf,F(r,n,R,N) > 0.
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The prime sieve

Next, we relax the above condition using the
Cohen-Huczynska (2003) sieving technique.
Proposition (Sieving inequality)
Let n,N | Q and r | Q/n,R | Q/N. Set

N(r,R) := #{(x, y) ∈ C2Q : x is (r,n)-free and y is (R,N)-free}.

For p1, . . . ,pu distinct prime divisors of r and l1, . . . lv distinct
prime divisors of R, write r∗ = krp1 · · ·pu and R∗ = kRl1 · · · lv,
where kr and kR are also square-free. Then

N(r,R) ≥
u∑
i=1

N(krpi, kR) +
v∑
i=1

N(kr, kRli)− (u+ v− 1)N(kr, kR).
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The prime sieve

Theorem

Assume the notation and conditions as above. Let p1, . . . ,pu
be distinct primes dividing r and l1, . . . , lv be distinct primes
dividing R. Write r∗ = krPr, where, for each i = 1, . . .u, pi|Pr
but pi ∤ kr and similarly R∗ = kRPR. Set
δ = 1−

∑u
i=1 1/pi −

∑v
i=1 1/li and suppose that δ > 0. Then

Nf,F ≥

δφ(kr)φ(kR)krnkRN

(
q− DnNW(kr)W(kR)

(
u+ v− 1

δ + 2
)
q1/2

)
.
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The prime sieve

As a consequence, we get:
Theorem
Let f, F,n,N be as above. Write ((q− 1)/n)∗ = knp1 · · ·pu,
where p1, . . . ,pu are distinct primes and similarly
((q− 1)/N)∗ = kNl1 · · · lv. Set δ = 1−

∑u
i=1 1/pi −

∑v
i=1 1/li

and assume δ > 0. Then, there exists some (x, X) ∈ F2q, such
that f(x) is n-primitive and F(X) is N-primitive, provided that

q1/2 ≥ DnNW(kn)W(kN) ·
(
u+ v− 1

δ + 2
)
.

We will refer to the primes p1, . . . ,pu, l1, . . . , lv as the sieving
primes.
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SPECIAL POINTS ON ELLIPTIC CURVES



An application on elliptic curves

Next, we apply our methods to study special points on elliptic
curves. More specifically, given an elliptic curve C : y2 = f(x)
defined over Fq, with f ∈ Fq[x] being a square-free cubic, we
study the existence of Fq-primitive points on C.

Equivalently, we request a primitive x, such that f(x) is
2-primitive, i.e., our goal is to prove that

Nf := Nx,f(x)(q− 1, 1, (q− 1)/2, 2) > 0

Notice that x, f(x) are squarefree polynomials and the ratio
x/f(x) is not a constant. Thus, an able condition for Nf > 0 is

q1/2 ≥ 3 · 1 · 2 ·W(q− 1)W
(
q− 1
2

)
= 6W(q− 1)W

(
q− 1
2

)
.
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Numerical computations

With the help of the SAGEMATH software, we show the
following generic result.

Theorem
Let q > 82192111 be an odd prime power. Further, let
f(x) ∈ Fq[x] be a squarefree polynomial of degree 3, then the
elliptic curve C : y2 = f(x) contains Fq-primitive points.
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The elliptic curve C : y2 = x3 − ax

Finally, we study the special case of the elliptic curve
C : y2 = fa(x), where fa(x) = x3 − ax, a ∈ F∗q.

We repeat the same steps and we obtain that if q > 16763671,
then the elliptic curve C : y2 = fa(x) has some Fq-primitive
point. In the range 3 ≤ q ≤ 16763671 there are 11041 odd
prime powers that may not possess this property.
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A conjecture

Conjecture
Let q be an odd prime power let a ∈ F∗q. If fa(x) = x3 − ax,
then the elliptic curve C : y2 = f(x) has some Fq-primitive
point, unless q = 3, 5, 7, 9, 13, 17, 25, 29, 31, 41, 49, 61, 73, 81,
121 and 337.

The conjecture holds for q 6∈ [141121, 167763671].

q 3 5 7 9 13 17 25 29
# curves 1 2 3 5 5 6 12 1

q 31 41 49 61 73 81 121 337
# curves 1 8 8 10 12 10 16 2

Number of curves C : y2 = x3 − ax, a ∈ F∗q, over Fq, without
Fq-primitive points, when q 6∈ [141121, 16763671].
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The elliptic curve C : y2 = x3 ± x

We repeat the same procedure for two special curves,
C : y2 = x3 − x and C : y2 = x3 + x. In particular, after spending
just a few seconds of computer time, we explicitly check all
the possibly exceptional curves and, as a result, we obtain the
following complete results.
Theorem
Let q 6= 3, 7, 13, 17, 25, 49 and 121 be an odd prime power.
There exist Fq-primitive points on the elliptic curve
C : y2 = x3 − x.

Theorem
Let q 6= 5, 9, 17, 41 and 49 be an odd prime power. There exist
Fq-primitive points on the elliptic curve C : y2 = x3 + x.
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FUTURE WORK



Future work

• Additive analogue.
• R-module analogue.
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Thank You!

26/26


	Motivation
	Preliminaries
	Introducing  (r,n)-free elements
	(r, n)-freeness through polynomial values
	Special points on elliptic curves
	Future work
	References

