THE LINE AND THE TRANSLATE PROPERTIES FOR r-PRIMITIVE ELEMENTS

Giorgos Kapetanakis

(Joint work with Stephen D. Cohen)

University of Thessaly

Fq15, Paris, 19/06/2023

MOTIVATION

Primitivity and *r***-primitivity**

- Let $\mathbf{F}_{q^n}/\mathbf{F}_q$ be a finite field extension.
- An element of $\mathbf{F}_{q^n}^*$ of order $\frac{q^n-1}{r}$ is called *r*-primitive, while 1-primitive elements are called primitive.
- The existence of 2-primitive elements that also possess other desirable properties has been considered (Cohen-K. 2019, K.-Reis 2018).

The translate property

- Some $\theta \in \mathbf{F}_{q^n}$ is a generator of $\mathbf{F}_{q^n}/\mathbf{F}_q$ if $\mathbf{F}_{q^n}=\mathbf{F}_q(\theta)$.
- If θ is a generator of $\mathbf{F}_{q^n}/\mathbf{F}_q$, the set

$$\mathcal{T}_{\theta} := \{\theta + x : x \in \mathbf{F}_q\}$$

the set of translates of θ over \mathbf{F}_q . Every element of this set a translate of θ over \mathbf{F}_q .

• The extension $\mathbf{F}_{q^n}/\mathbf{F}_q$ possesses the translate property for r-primitive elements, if every set of translates contains an r-primitive element. In particular, for r=1 we simply call it the translate property.

The Carlitz-Davenport theorem

A classical result in the study of primitive elements is the following.

Theorem (Carlitz-Davenport)

There exist some $T_1(n)$ such that for every $q > T_1(n)$, the extension $\mathbf{F}_{q^n}/\mathbf{F}_q$ possesses the translate property.

- This was first proven by Davenport (1937), for prime q, while Carlitz (1953) extended it as above.
- Interest in this problem was renewed by recent applications of the translate property in semifield primitivity (Rúa 2015, Rúa 2017).

The line property

• Let θ be a generator of the extension $\mathbf{F}_{q^n}/\mathbf{F}_q$ and $\alpha \in \mathbf{F}_{q^n}^*$. We call the set

$$\mathcal{L}_{\alpha,\theta} := \{ \alpha(\theta + x) : x \in \mathbf{F}_q \}$$

the line of α and θ over \mathbf{F}_q .

- An extension $\mathbf{F}_{q^n}/\mathbf{F}_q$ possesses the line property for r-primitive elements if every line of this extension contains an r-primitive element. When r=1, we refer to this as the line property.
- It is clear that the line property implies the translate property, i.e., take $\alpha=1$.

Cohen's theorem

A natural generalization of the Carlitz-Davenport theorem is the following:

Theorem (Cohen)

There exist some $L_1(n)$ such that for $q > L_1(n)$, the extension $\mathbf{F}_{q^n}/\mathbf{F}_q$ possesses the line property.

- Proven by Cohen (2010).
- Clearly, $L_1(n) \geq T_1(n)$.

Explicit results

A handful of values of $T_1(n)$ are known as follows.

- (Cohen 1983): $T_1(2) = L_1(2) = 1$.
- (Cohen 2009): $T_1(3) = 37$.
- (Cohen 2010): $T_1(4)$, $L_1(4)$ < 25944 and conjectured that $T_1(4)$, $L_1(4)$ < 64 but this work contains errors.
- (Bailey-Cohen-Sutherland-Trudgian 2019): $L_1(3) = 37$ and $73 \le T_1(4) \le L_1(4) \le 102829$.

Our contribution

In this talk, we will outline how

- we extended the Carlitz-Davenport and Cohen theorems to r-primitive elements and
- 2. how we obtained explicit results in the case r = n = 2, that is, how we calculated $T_2(2)$ and $L_2(2)$.

These works can be found in the following references:

S.D. Cohen and G. Kapetanakis.

Finite field extensions with the line or translate property for r-primitive elements.

Journal of the Australian Mathematical Society, 111(3):313–319, 2021.

S.D. Cohen and G. Kapetanakis.

The translate and line properties for 2-primitive elements in quadratic extensions.

International Journal of Number Theory, 16(9):2029–2040, 2020.

PART I: ASYMPTOTIC RESULTS

Preliminaries - Freeness

- Let $m \mid q^n 1$, an element $\xi \in \mathbf{F}_{q^n}^*$ is m-free if $\xi = \zeta^d$ for some $d \mid m$ and $\zeta \in \mathbf{F}_{q^n}^*$ implies d = 1.
- The following lemma shows the relation between m-freeness and multiplicative order.

Lemma (Huczynska-Mullen-Panario-Thomson, 2013)

If
$$m \mid q^n - 1$$
 then $\xi \in \mathbf{F}_{q^n}^*$ is m-free if and only if $\gcd\left(m, \frac{q^n - 1}{\operatorname{ord} \xi}\right) = 1$.

Preliminaries - characteristic functions

Vinogradov's formula yields an expression for the characteristic function of *m*-free elements in terms of multiplicative characters:

$$\Omega_m(x) := \theta(m) \sum_{d|m} \frac{\mu(d)}{\varphi(d)} \sum_{\text{ord } \chi = d} \chi(x),$$

where μ is the Möbius function, φ for the Euler function, $\theta(m) := \varphi(m)/m$ and the inner sum suns through multiplicative characters of order d.

The characteristic function for the elements of $\mathbf{F}_{q^n}^*$ that are k-th powers is

$$W_k(x) := \frac{1}{k} \sum_{d|k} \sum_{\text{ord } \chi = d} \chi(x).$$

Fix r, n and q, such that $r \mid q^n - 1$. We will express $\Gamma(x)$, the characteristic function for r-primitive elements of \mathbf{F}_{q^n} in a convenient way, using characters.

Let $\mathcal P$ be the set of primes dividing q^n-1 , i.e., $q^n-1=\prod_{p\in\mathcal P}p^{a_p}$. Assume $r=\prod_{p\in\mathcal P}p^{b_p}$. For every $p\in\mathcal P$, $0\leq b_p\leq a_p$.

We partition \mathcal{P} as follows:

$$\begin{split} \mathcal{P}_{s} &:= \{ p \in \mathcal{P} \ : \ a_{p} = b_{p} > 0 \}, \\ \mathcal{P}_{t} &:= \{ p \in \mathcal{P} \ : \ a_{p} > b_{p} > 0 \} = \{ p_{1}, \dots, p_{k} \}, \\ \mathcal{P}_{u} &:= \{ p \in \mathcal{P} \ : \ a_{p} > b_{p} = 0 \}. \end{split}$$

Set

$$s:=\prod_{p\in\mathcal{P}_s}p^{b_p},\, t:=\prod_{p\in\mathcal{P}_t}p^{b_p} \text{ and } u:=\prod_{p\in\mathcal{P}_u}p.$$

• The set of u-free elements, contains all the σ -primitive elements, where

$$\sigma = \prod_{p \in \mathcal{P}_s \cup \mathcal{P}_t} p^{\sigma_p},$$

for some $0 \le \sigma_p \le a_p$.

- For i = 1, ..., k set $e_i := p_i^{b_{p_i}}$ and $f_i := p_i^{b_{p_i}+1}$.
- From the set of u-free elements, that are also r-th powers, exclude those that are not f_i -th powers for every i.
- We are left with the r-primitive elements.

Thus, the characteristic function for r-primitive elements of $x \in \mathbf{F}_{a^n}^*$ can be expressed as

$$\Gamma(x) = \Omega_{u}(x)w_{r}(x) \prod_{i=1}^{k} (1 - w_{f_{i}}(x))$$

$$= \Omega_{u}(x)w_{s}(x) \prod_{i=1}^{k} w_{e_{i}}(x)(1 - w_{f_{i}}(x))$$

$$= \Omega_{u}(x)w_{s}(x) \prod_{i=1}^{k} (w_{e_{i}}(x) - w_{f_{i}}(x)).$$

Further,

$$\begin{aligned} w_{e_i}(x) - w_{f_i}(x) &= \frac{1}{e_i} \sum_{d \mid e_i \text{ ord } \chi = d} \chi(x) - \frac{1}{f_i} \sum_{d \mid f_i \text{ ord } \chi = d} \chi(x) \\ &= \frac{1}{e_i} \sum_{d \mid f_i \text{ ord } \chi = d} \ell_{i,d} \chi(x), \end{aligned}$$

where, for $d \mid f_i$,

$$\ell_{i,d} := \begin{cases} 1 - 1/p_i, & \text{if } d \neq f_i, \\ -1/p_i, & \text{if } d = f_i. \end{cases}$$

Putting everything together, we obtain

$$\Gamma(x) = \frac{\theta(u)}{r} \sum_{\substack{d_1 \mid u, d_2 \mid s \\ \delta_1 \mid f_1, \dots, \delta_k \mid f_k}} \frac{\mu(d_1)}{\varphi(d_1)} \ell_{1, \delta_1} \cdots \ell_{k, \delta_k} \sum_{\substack{\text{ord } \chi_j = d_j \\ \text{ord } \psi_i = \delta_i}} (\chi_1 \chi_2 \psi_1 \cdots \psi_k)(x),$$

where $x \in \mathbf{F}_{q^n}^*$ and $(\chi_1 \chi_2 \psi_1 \cdots \psi_{\lambda})$ stands for the product of the corresponding characters, a character itself.

Let $\mathcal{N}(\theta, \alpha)$ be the number of r-primitive elements of the form $\alpha(\theta + x)$, where $x \in \mathbf{F}_q$. It suffices to show that

$$\mathcal{N}(\theta, \alpha) = \sum_{\mathbf{x} \in \mathbf{F}_a} \Gamma(\alpha(\theta + \mathbf{x})) \neq 0.$$

We have that

$$\frac{\mathcal{N}(\theta, \alpha)}{\theta(u)} = \frac{1}{r} \sum_{\substack{d_1 | u, d_2 | s, \\ \delta_1 | f_1, \dots, \delta_k | f_k}} \frac{\mu(d_1)}{\varphi(d_1)} \ell_{1, \delta_1} \cdots \ell_{k, \delta_k}$$

$$\sum_{\substack{\text{ord } \chi_j = d_j \\ \text{ord } \psi_i = \delta_i}} \mathcal{X}_{\alpha, \theta}(\chi_1, \chi_2, \psi_1, \dots, \psi_k),$$

where

$$\mathcal{X}_{\alpha,\theta}(\chi_1,\chi_2,\psi_1,\ldots,\psi_k) := \sum_{x\in \mathbf{F}_q} (\chi_1\chi_2\psi_1\cdots\psi_k)(\alpha(\theta+x)).$$

- The orders of all the factors of the character product $(\chi_1\chi_2\psi_1\cdots\psi_k)$ are relatively prime. Hence the product itself is trivial if and only if all its factors are trivial, i.e., $\mathcal{X}_{\alpha,\theta}(\chi_0,\chi_0,\chi_0,\ldots,\chi_0)=q.$
- When at least one of the characters χ_1 , χ_2 , ψ_1 ,..., ψ_k is non-trivial, we use the following:

Proposition (Katz, 1989)

Let θ be a generator of $\mathbf{F}_{q^n}/\mathbf{F}_q$ and $\chi \neq \chi_0$ a character. Then

$$\left|\sum_{x\in F_q}\chi(\theta+x)\right|\leq (n-1)\sqrt{q}.$$

We get $|\mathcal{X}_{\alpha,\theta}(\chi_1,\chi_2,\psi_1,\ldots,\psi_k)| \leq \sqrt{q}$.

We separate the term that corresponds to $d_1 = d_2 = \delta_1 = \ldots = \delta_k = 1$ and obtain

$$\left|\frac{\mathcal{N}(\theta,\alpha)}{\theta(u)} - \frac{q}{r} \cdot \ell_{1,1} \cdots \ell_{k,1}\right| \leq \frac{1}{r} \sum_{\substack{d_1 \mid u, d_2 \mid s, \\ \delta_1 \mid f_1, \dots, \delta_k \mid f_k \\ \text{not all equal to 1}}} \frac{|\ell_{1,\delta_1} \cdots \ell_{k,\delta_k}|}{\varphi(d_1)} \sum_{\substack{\text{ord } \chi_j = d_j \\ \text{ord } \psi_i = \delta_i}} \sqrt{q}.$$

For all $1 \le i \le k$, $|\ell_{i,\delta_i}| \le \ell_{i,1}$, hence $\mathcal{N}(\theta, \alpha) \ne 0$ if

$$q > \sum_{\substack{d_1 \mid u, d_2 \mid s, \\ \delta_1 \mid f_1, \dots, \delta_k \mid f_k}} \frac{1}{\varphi(d_1)} \sum_{\substack{\text{ord } \chi_j = d_j \\ \text{ord } \psi_i = \delta_i}} \sqrt{q}.$$

For every $d \mid q^n - 1$, there are exactly $\varphi(d)$ characters of order d. Hence the latter can be rewritten as

$$q > s \cdot f_1 \cdots f_k \cdot d(u) \cdot \sqrt{q},$$

Also
$$u\mid q^n-1$$
, thus $d(u)\leq d(q^n-1)=o(q^{1/4})$. Further,
$$s\cdot f_1\cdots f_k\leq A_r:=\prod_{p\in \mathcal{P}_s\cup \mathcal{P}_t}p_i^{b_i+1},$$

where the RHS of the above inequality depends solely on r. Thus, for q large enough, the above holds. We have proven the following:

Theorem (Cohen-K., 2021)

There exist some $L_r(n)$ such that for every prime power $q > L_r(n)$, with the property $r \mid q^n - 1$, the extension $\mathbf{F}_{q^n}/\mathbf{F}_q$ possesses the line property for r-primitive elements. If we confine ourselves to the translate property for r-primitive elements, the same is true for some $T_r(n) \leq L_r(n)$.

PART II: EXPLICIT RESULTS

First results

- Since $2 | q^2 1$, q is odd and $4 | q^2 1$.
- Thus, following the previous notation, s = 1, t = 2 and u is the square-free part of the odd part of $q^2 1$.
- Set $W(q^2 1) = 2^{t(q^2 1)}$, where t(R) stands for the number of prime divisors of R. Clearly, $W(q^2 1) = 2d(u)$.
- Hence a sufficient condition for ${\bf F}_{q^2}/{\bf F}_q$ to possess the line property is

$$\sqrt{q} \geq 2W(q^2-1).$$

- We have that $W(R) \le d_R R^{1/8}$, where $d_R < 4514.7$.
- · We obtain the desired result when

$$q \ge (2 \cdot 4514.7)^4 \simeq 6.65 \cdot 10^{15}.$$

• This implies that the case $t(q^2 - 1) \ge 14$ is settled.

Cohen's evaluation

In the special case n=2, Katz's theorem can be improved as follows

Lemma (Cohen, 2010)

Let θ be a generator of $\mathbf{F}_{q^2}/\mathbf{F}_q$ and $\chi \neq \chi_0$ a character. Set

$$B := \sum_{\mathbf{x} \in \mathbf{F}_{a}} \chi(\theta + \mathbf{x}).$$

- 1. If ord $\chi \nmid q + 1$, then $|B| = \sqrt{q}$.
- 2. *If* ord $\chi \mid q + 1$, then B = -1.

Further theoretical reductions

With the above in mind we:

- 1. Distinguish the cases $q \equiv 1 \pmod{4}$ and $q \equiv 3 \pmod{4}$.
- 2. Employ the Cohen-Huczynska (2003) sieve.
- 3. Use an algorithm that settles the case $\alpha \le t(q^2 1) \le \beta$ and successfully use it when $(\alpha, \beta) = (11, 13)$ and (10, 10).
- 4. We are left with the case $t(q^2 1) \le 9$, i.e., $q \le (2 \cdot 2^9)^2 = 1048576$.
- 5. The interval $3 \le q \le 1048576$ contains exactly 82247 odd prime powers.
- 6. We first replace d_{q^2-1} by its exact value and then $W(q^2-1)$ by its exact value we reduce the list to a total of 2425 possible exceptions.

Final theoretical reductions

The sieve reduces that list to a total of 101 possible exceptions as follows:

q	#
3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53,	101
59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 109, 113, 121, 125,	
127, 131, 137, 139, 149, 151, 157, 169, 173, 181, 191, 197, 199,	
211, 229, 239, 241, 269, 281, 307, 311, 331, 337, 349, 361, 373,	
379, 389, 409, 419, 421, 461, 463, 509, 521, 529, 569, 571, 601,	
617, 631, 659, 661, 701, 761, 769, 841, 859, 881, 911, 1009, 1021,	
1231, 1289, 1301, 1331, 1429, 1609, 1741, 1849, 1861, 2029,	
2281, 2311, 2729, 3541	

Direct verification

- 1. We first verified the translate property for the 101 exceptional prime powers. It turns out that the only genuine exceptions are q=5,7,11,13,31 and 41. We spent about 2.5 hours of computer time for this.
- 2. A direct verification of the line property revealed the additional genuine exceptions q=3 and 9.
- The direct verification of the line property turned out to be exceptionally expensive in terms of computer time.
 For example, q = 3541 required 45 days of computer time, q = 2729 required 20 days and q = 2029 required 14 days.

Summing up, we proved the following:

Theorem (Cohen-K., 2020)

For every odd prime power $q \neq 5$, 7, 11, 13, 31 or 41 the extension $\mathbf{F}_{q^2}/\mathbf{F}_q$ possesses the translate property for 2-primitive elements. In particular, $T_2(2) = 41$.

Theorem (Cohen-K., 2020)

For every odd prime power $q \neq 3$, 5, 7, 9, 11, 13, 31 or 41 the extension $\mathbf{F}_{q^2}/\mathbf{F}_q$ possesses the line property for 2-primitive elements. In particular, $L_2(2)=41$.

