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Abstract

In this work, we are interested in the existence of polynomials with special properties
over finite fields. In Chapter 2 some background material is presented. We present
some basic concepts of characters of finite abelian groups and we prove some basic
results. Next, we focus on Dirichlet characters and on the characters of the additive
and the multiplicative groups of a finite field. We conclude this chapter with an ex-
pression of the characteristic function of generators of cyclic R-modules, where Ris a
Euclidean domain, known as Vinogradov’s formula.

In Chapter 3, we consider a special case of the Hansen-Mullen conjecture. In
particular, we consider the existence of self-reciprocal monic irreducible polynomials
of degree 2n over IF,, where g is odd, with some coefficient prescribed. First, we
use Carlitz’s characterization of self-reciprocal polynomials over odd finite fields and,
with the help of Dirichlet characters, we prove asymptotic conditions for the existence
of polynomials with the desired properties. As a conclusion, we restrict ourselves
to the first n/2 (hence also to the last n/2) coefficients, where our results are more
efficient, and completely solve the resulting problem.

In Chapter 4 we extend the primitive normal basis theorem and its strong version.
Namely, we consider the existence of polynomials whose roots are simultaneously
primitive, produce a normal basis and some given Mdobius transformation of those
roots also produce a normal basis. First, we characterize elements with the desired
properties and with the help of characters, we end up with some sufficient condi-
tions, which we furtherly relax using sieving techniques. In the end, we prove our
desired results, with roughly the same exceptions as the ones appearing in the strong
primitive normal basis theorem.

In Chapter 5, we work in the same pattern as in Chapter 4, only here we demand
that the Mobius transformation of the roots of the polynomial is also primitive. We
roughly follow the same steps and prove that there exists a polynomial over a finite
field such that its roots are simultaneously primitive and produce a normal basis and
some given Mobius tranformation of its roots also possess both properties, given that
the cardinality of the field and the degree of the polynomial are large enough.

Keywords: finite field, primitive element, normal basis, free element, self-reciprocal
polynomials, character sums, Hansen-Mullen conjecture
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CHAPTER 1

Introduction

In this thesis, some existence results for irreducible polynomials over finite fields, with
special properties are shown. These properties include combinations of primitiveness,
freeness (i.e. a root of the polynomial form a normal basis) and having some coeffi-
cients prescribed. Also, since an irreducible polynomial over a finite field is fully
characterized by its roots, we consider the roots of the polynomials, instead of the
polynomials themselves, if such a replacement is convenient or natural. In particular,
we study the Hansen-Mullen conjecture for self-reciprocal irreducible polynomials
and we extend the primitive normal basis theorem and its strong version.

Although the origins of the study of finite fields are found in antiquity, the formal
study of finite fields has its roots in beginning of the 19th century and Gauss’ book
Disquisitiones Arithmeticae [29]. The first though to extensively work on finite fields
was, a few years later, Galois in Sur la théorie des nombres [22]. This work is a landmark
to the subject and, consequently, many authors use the term Galois field to denote a
finite field. The interested reader is referred to [48, Chapter 1] and the references
therein for more detailed coverage of the history of the theory of finite fields.

Throughout this thesis, Iy, will stand for the finite field of g elements, Fyn for
its extension of degree m, where m > 1 and F,, as its prime field. It is well-known
that p should be a prime number, also known as the characteristic of all the men-
tioned finite fields, and g should power of p. The polynomial ring over a finite field,
besides its great theoretical interest, also has numerous important applications, in-
cluding efficient computation in finite fields, fast Fourier transform, coding theory
and cryptography.

The main idea behind our techniques dates back to the 50’s and the work of Carlitz
[2, 3], yet remains popular among authors in this line of research. Namely, first, we ex-
press the characteristic or a characteristic-like function for a polynomial (or its roots)
with the desired properties with help of characters and we end up with a sufficient
condition for the existence of our desired polynomial. This leads us to asymptotic re-
sults, with the the help of characters sum estimates and, if necessary and desirable, we
deal with the remaining cases with a case-by-case approach. The interested reader is
referred to recent survey articles [10, 36] and the references therein for detailed cov-
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erage of this, very active, line of research and the techniques involved.

1.1 The Hansen-Mullen conjecture

Our main work on the Hansen-Mullen conjecture is presented in Chapter 3. Also, we
note that this work is joint work with Garefalakis and published in [27, 28].

Hansen and Mullen [32] conjectured that there exists an irreducible polynomial
over F, with an arbitrary coefficient prescribed, with a couple of obvious exceptions.

Conjecture 1.1 (Hansen-Mullen). Let a € Fy, let n > 2 and fix 0 < j < n. Then there
exists an irreducible polynomial P(X) = X" + >"}_, PcX* over F, with P; = a except
whenj=a=0orqgeven,n=2,j=1,and a = 0.

By considering primitive polynomials with given trace, Cohen [7] proved that the
conjecture is true for j = n — 1, while Hansen and Mullen proved their conjecture
for j = 1. Shortly after, Wan [57] proved that the conjecture holds, for g > 19 or
n > 36 and Ham and Mullen [31] proved the remaining cases with the help of com-
puters, completing the proof of the Hansen-Mullen conjecture. Those cases have also
been settled theoretically by Cohen and Presern [14, 15]. Several extensions of this
result have also been shown [24, 26, 49]. The interested reader is referred to [48, Sec-
tion 3.5] and the references therein for a more complete coverage of recent results on
prescribing coefficients of irreducible polynomials over finite fields.

Given a polynomial Q € F,[X], its reciprocal QR is defined as

F(x) = x1#Q0(1/X).
One class of polynomials that has been intensively investigated [4, 8, 26, 46, 47, 61]
is that of self-reciprocal irreducible polynomials, that is, irreducible polynomials that
satisfy Qf(X) = Q(X). Besides the theoretical interest in their existence and den-
sity, self-reciprocal irreducible polynomials have been useful in applications, and in
particular in the construction of error-correcting codes [34, 45].

It is natural to expect that self-reciprocal monic irreducible polynomials over finite
fields, with some coefficient fixed, exist. Here, we restrict ourselves to the case where
q is odd and prove that there exists a self-reciprocal irreducible monic polynomial
over Fy, of degree 2n with its k-th coefficient prescribed, provided that

n—k—1

> Stk s 4 L
q _5(+)+2-

With this result in mind, we show, see Theorem 3.11, that for odd g and n > 3, we can
prescribe the k-th coefficient of a self-reciprocal irreducible polynomial of degree 2n,
provided that k < |n/2|, with a small number of genuine exceptions. The proof of
the main theorem is based on an estimate of a weighted sum, which is very similar to
the one that Wan [57] considers. Our main tools are Weil’s bound for character sums,
Carlitz’s [4] characterization of self-reciprocal irreducible monic polynomials over I,
and a character sum estimate proved in [26].

1.2 Extending the (strong) primitive normal basis theo-
rem

Our main work on extending the primitive normal basis theorem and its strong ver-
sion is presented in Chapters 4 and 5. The work in Chapter 4 is published in [41] and



1.2 EXTENDING THE (STRONG) PRIMITIVE NORMAL BASIS THEOREM 5

the work in Chapter 5 is published in [40].

A generator of the multiplicative group Fg, is called primitive. It is well-known
that primitive elements exist for every g and m, see [44, Theorem 2.8]. Besides their
theoretical interest, primitive elements of finite fields are widely used in various appli-
cations, including cryptographic schemes, such as the Diffie-Hellman key exchange
[17], and the construction of Costas arrays [30], used in sonar and radar technology.

An element x € Fyn is called free over Iy (or just free if such a simplification is

not confusing) if the set {x, x4, xqz7 ey xqmﬂ} is an IF ;-basis of IFgn, once we view the
latter as an IF-vector space. Such a basis is called normal. Hensel [33], in 1888, proved
the existence of normal basis for arbitrary finite field extensions. This result is known
as the normal basis theorem (also see [44, Theorem 2.35]) in modern literature. Hensel
also observed their computational advantages for finite field arithmetic. Naturally,
a number of software and hardware implementations, used mostly in coding theory
and cryptography, make use of normal basis. For further information on normal basis
and some of their applications, we refer to [23] and the references therein.

It is not hard to see that both primitiveness and freeness are properties common
to either all or none of the roots of some given irreducible polynomial of IF; of degree
m, hence one can define primitive polynomials and free polynomials naturally, while
the existence of primitive or free elements implies the existence of primitive or free
polynomials respectively and vice versa. Here, it is worth noting that Hansen and
Mullen [32], also conjectured the existence of monic primitive polynomials with pre-
scribed coefficients, with a few exceptions. This has also been shown to be true, see
[36, Section 2.4] and the references therein for a detailed account of this result.

As already stated both primitive and free elements exist for every g and m. The
existence of elements that are simultaneously primitive and free is also well-known.

Theorem 1.2 (Primitive normal basis theorem). Let q be a prime power and m a positive
integer. There exists some x € Fyn that is simultaneously primitive and free over I .

Lenstra and Schoof [43] were the first to provide a complete proof of the above,
completing partial proofs of Carlitz [2, 3] and Davenport [16]. Recently, Cohen and
Huczynska [12] provided a computer-free proof, with the help of sieving techniques,
previously introduced by Cohen [9]. Also, several generalizations of Theorem 1.2
have been investigated [11, 35, 37, 58]. A family of extensions of the above, that is
of special interest for us, is the consideration of primitive and free polynomials with
their coefficients prescribed [18, 19, 20, 21]. More recently, an even stronger result
was shown.

Theorem 1.3 (Strong primitive normal basis theorem). Let q be a prime power and m a
positive integer. There exists some x € Fgn such that x and x~' are both simultaneously
primitive and free over Iy, unless the pair (q, m) is one of (2,3), (2,4), (3,4), (4,3) or
(5,4).

Tian and Qi [56] were the first to prove this result for m > 32, but Cohen and
Huczynska [13] were those who extended it to its stated form, once again with the
help of their sieving techniques.

We consider an action of GL,(IFy), the group of 2 x 2 invertible matrices over
Fg, on irreducible polynomials over [F; of degree at least 2. More specifically, set
I, := {F € Fg[X] : Firreducible of degree n} and let A = (%) € GL,(F,) and
Fel,, n> 2. We define

AoF(X) := (—cX+ a)"F (_di;fa) .
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It is not hard to check that JoF = Fand that (AB)oF = Ao(BoF) forall A, B € GL,(IF,)
and F € Fy[X], where I = (§ 7). It follows that the above rule does indeed define an
action of GL,(FF4) on I,, n > 2. The problem of the enumeration of the fixed points
of this action has recently gained attention [25, 55].

In this work we are interested in whether there exists a primitive F € Fy[X], of
degree m such that F and A o F are simultaneously free and we are also interested
whether there exists an F € Fy[X], of degree m such that both Fand A o Fare simul-
taneously primitive and free. Moreover, for fixed A = (‘C’ Z) € GL,(IF,) one easily
checks that x € Fyn is a root of F(X) € I, if and only if (ax+ b)/(cx+ d), the Mobius
transformation of x that A defines, is a root of AoF. Further, it turns out to be easier to
check the existence of the roots of the polynomials mentioned, than the polynomials
themselves. It follows that our problems can be restated as follows.

Problem 1.4. Let g be a prime power, m a positive integer and A = ( g Z) € GL,(F
Does there exist some primitive x € Fgn such that both x and (ax + b)/(cx + d) are
free over IF?

Problem 1.5. Let g be a prime power, m a positive integer and A = ( g Z) € GLy(Fy).
Does there exist some x € Fgn such that both x and (ax+ b)/(cx + d) are simultane-
ously primitive and free over IF;?

Here we note, that the two problems are similar, but not identical, i.e. Problem 1.4
has three conditions (x is primitive, x is free over Fy and (ax+ b)/(cx+ d) is free over
IE‘q), while Problem 1.5 has four conditions, the three conditions of Problem 1.4 plus
the condition of (ax+ b)/(cx+ d) to be primitive. Another note is that both problems
qualify as extensions to both Theorems 1.2 and 1.3. This is clear for Theorem 1.2. To
make it clear for Theorem 1.3, notice that although Theorem 1.3 seems to have four
conditions (x is primitive, x is free over I, x~ ! is primitive and x~! is free over Fy)
it has just three genuine conditions, since the two conditions of x to be primitive and
x~! to be primitive overlap.

In Chapter 4 we solve Problem 1.4 completely, see Theorem 4.25. Namely, we
prove that the problem can be answered positively, with the exception of an explicit
small list of genuine exceptions. In Chapter 5 we partially solve Problem 1.5, see
Theorem 5.22. In particular, we show that the problem can be answered positively,
when g and m are large enough.



CHAPTER 2

Background material

In this chapter we present some necessary background material. The results presented
here are well-known.

2.1 Characters and character sums

Characters and character sums play a crucial role in characterizing polynomials and
elements of finite fields with the desired properties and in estimating the number of
elements and polynomials who combine all the desired properties. The definition of
a character is essential.

Definition 2.1. Let & be a finite abelian group. A character of & is a group homomor-
phism & — C*, where C* stands for the multiplicative group of C. The characters of
& form a group under multiplication, which is isomorphic to &. This group is called
the dual of & and denoted by ®. Furthermore, the character Xo : & — C*, where
Xo(g) = 1forall g € &, is called the trivial character of ®. Finally, by y we denote
the inverse of y.

The interested reader is referred to classic textbooks [38, 44, 52] for an in-depth
study of the wonderful world of characters.

A character or exponential sum is a sum that involves characters. Later, charac-
ters will be used to characterize elements with the desired properties and character
sums will come up, hence a computation, or at least an estimate, of such sums will be
necessary. The simplest, albeit very important, form of character sum is presented in
the following lemma.

Lemma 2.2 (Orthogonality relations). Let y be a non-trivial character of a group & and
g a non-trivial element of &. Then

Z)((x) =0 and Z x(g) =o.

x€® 1E®
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Proof. Since y is non-trivial, there exists some h € & with y(h) # 1. We have that

(WD x(x) =Y x(hx) => x(x),

x€® x€® x€d

because as x runs through &, so does hx. It follows that

(x(h) = 1) x(x) =0,
x€®
which implies the first of the two equations in question, since y(h) # 1. For the
second part, we observe that the function g : & — C*, y — x(g) is a well-defined
non-trivial character of &. It follows, from what we have already proven, that

> xle)=> &) =0 0

)(665 )(e@

Remark 2.3. The orthogonality relations are true for an arbitrary group &.

In the proceeding subsections, we present characters and character sums of spe-
cific groups.

2.1.1 Dirichlet characters

A useful concept is that of a Dirichlet character modulo F, where F € F,[X]. Dirichlet
characters are originally defined over Z, the ring of integers, but one can easily define
Dirichlet characters for F¢[X], the polynomial ring of F.

Definition 2.4. Given some F € F([X], a Dirichlet character modulo F is a function
X : Fg[X] — C*, such that

1. x(G+FH) = x(G),

2. x(GH) = x(G)x(H) and
3. y(G) #£0 < (G, F) =1,

for every G, H € Fy[X].

Remark 2.5. Clearly, Dirichlet characters modulo F are essentially the characters of
(IFq[X]/FF4[X])*, extended to zero. Also, there is a bijection between Dirichlet char-
acters modulo F and homomorphisms (Fy[X]/FIF,[X])* — C*.

Let M € F,[X] be a polynomial of degree at least 1 and suppose y is a non-trivial
Dirichlet character modulo M. The Dirichlet L-function associated with y is defined to
be

L(s,x) = Z X(F), s€C, R(s) > 1,

Lk
FEF4[X] monic
where |F| = ¢1°8() is the absolute value of the polynomial F. By using Lemma 2.2, it
is not hard to show, see [51, Proposition 4.3], that the above is a polynomial in g~*, of
degree deg(M) — 1. By making the substitution u = ¢~*, and noting that the constant
term of that polynomial has to be equal to 1, we conclude that

oo deg(M)—1
L) =Lwn=) | > xB|vw= ][] t-mxw, @1
n=0 Fmonic i=1

deg(F)=n
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where the 7;’s are the inverses of the roots of L(u, y). The following theorem follows
from the Riemann hypothesis for function fields and is the function field equivalent
of the generalized Riemann hypothesis.

Theorem 2.6 (Weil). |7,(x)| € {1,,/q}.

Weil [60] originally proved this result and gave two proofs, both using algebraic
geometric techniques. Later, Bombieri [1] gave an elementary proof of the above. For
more information on the Riemann hypothesis for function fields, the interested reader
is referred to [39, 51, 54].

Since y is completely multiplicative, it follows that the power series expression of
L(u, x) in Eq. (2.1) can be expressed as an Euler product, as

u,x) = H H (1- )((P)ud)71 .

d=1 P monic irreducible
deg(P)=d

Taking the logarithmic derivative of L(u, y) and multiplying by u, we obtain a series
>, 2. 4 P e Y N
d=1 P monic irreducible d=1 P monic irreducible n=1
deg(P)=d deg(P)=
since | (P)u| < 1. The latter can be rewritten as ) -, c,(y)u", with

Z > x»t

P monic 1rredu01ble
deg(P)=

We follow the same steps, i.e. take the logarithmic derivative and multiply by u, in
the polynomial expression of L(u, y) in (2.1). This leads us to the series

oo deg(M)—1
2| 2 mwr)w
n=1 i=1
The above, combined with Theorem 2.6 imply the following theorem.

Theorem 2.7. Let y be a Dirichlet character modulo M. Then

1 If y # x, then

M:

lea(X)] < (deg(M) — 1)g:=.
2. If x # x, and x(Fy) = 1, then
1+ ea(x)| < (deg(M) —2)q°.
For a detailed account of the above well-known facts, see [51, Chapters 4 and 9].
We will also need the following result of [26].

Theorem 2.8 (Garefalakis). Let 1/(P) = (P|X? — 4) be the Jacobi symbol of P modulo
X? — 4 and y be a non-trivial Dirichlet character modulo X1 wwhere k > 1. The
following bounds hold:
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1. Foreveryn € N, n > 2,

x(P)| < g
P monic irreducible
2. Foreveryn € N, n > 2, n odd,
> x| <ERg
P monic irreducible
(P)=1

For H € IF,[X], we define the von Mangoldt function as

deg(P), if His a power of the irreducible P,
if H=1,

0, otherwise.

It follows directly from the definition of A, that

aly)= > A(Hx(H).
Hmonic
deg(H)=n

We will encounter character sums, which involve a character y that is trivial on
7. and where the sums run over polynomials with constant term equal to 1 (not
necessarily monic). Estimates for such character sums, follow directly from the esti-
mates of the related sums that run over monic polynomials. Since our focus will be
on Dirichlet characters modulo X*t!, we state our proposition accordingly.

Proposition 2.9. Let n,k € N, 1 < k < n and let y be a non-trivial Dirichlet character
modulo X**1, such that x(F}) = 1.

Z AH)y(H)| <1+ kq?, forn>1. (2.2)
deg(H)=n
=1
ST P < EBgE, forn>z, (2.3)
Pirreducible
Py=1,y(P)=e
where either e = —1, or e = 1 and n is odd.

Proof. For Eq. (2.2), we note that as H runs over the polynomials of degree n with
constant term 1, H/H, runs over the monic polynomials of degree n. Taking into
account that y(IF;) = 1, we have

S AmEE|=| T A(H)X<Hn> | amxm

deg(H)=n deg(H)=n deg(H)=n
Hy=1 Hy=1 H monic
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and the bound follows from Theorem 2.7. For Eq. (2.3) the same observation applies,
that is, as P runs over irreducible polynomials with constant term equal to 1, P/P,
runs over monic irreducible polynomials. Further, for any constant ¢ € F¢, V() = 1.
The bound in Eq. (2.3) now follows from Theorem 2.8 and the fact that ¢/ is completely
multiplicative. 0

2.1.2 Additive and multiplicative characters

The arbitrary finite field I, is associated with two groups: its multiplicative group,
which we denote by 7, and its additive group, which we denote by F,. From now on,
we will call the characters of Fy, multiplicative characters and the characters of I ¢n
additive characters. Furthermore, we will denote by y, and ¢/, the trivial multiplicative
and additive character respectively and we will extend the multiplicative characters
to zero with the rule

0, ifye T, ,
X(O) = { ' X B q' \{XO}
1, ify=y,.

As already mentioned, the group of multiplicative characters is isomorphic to Fg.,
hence cyclic. We denote a generator of this group by x, and call it a generator charac-
ter. It follows that every non-trivial multiplicative character y satisfies y(x) = x,(x")
for some 1 < n < ¢™ — 2. Another special multiplicative character is the quadratic
character, denoted by 7, that is 7(x) = 1 if and only if x is a square in Fg» and
7(x) = —1 otherwise.

Similarly, it is not hard to see that the mapping x — exp(27iTr(yx)/p), where Tr
stands for the absolute trace function from Fy» onto F, and y € Fyn, is an additive
character and, by noting that for different values of y different additive characters
arise, we conclude that all additive characters are of that form. The trivial character
corresponds to y = 0 and the canonical character, by definition, corresponds to y = 1
and is denoted by /. It follows that the arbitrary additive character y/ satisfies ¥(x) =
¥, (yx), for some y € Fgn.

Suppose y is a multiplicative character, { an additive character and s € Z>;. For
x € Fyn, we define y¥) (x) := X(NF, . /F, (x)) and Y9 (x) = Y(Trp . /F,m (%)), where
Nqus JEym stands for the norm function from [Fgns to Fy» and Tr]qus JFym stands for the
trace function from F gns to Fyn and Trp - It follows from the standard properties

of norm and trace that y(*) and lﬂ(s) belong to IE’;; and Iﬁq; respectively and are known
as the lifted characters that y and ¢ define.

We will use additive and multiplicative characters to conveniently express the
characteristic functions of the properties we are interested in. As a natural conse-
quence, some character sums of those types will emerge and a computation, or at
least an estimation of those will be crucial. The following well-known results pro-
vides us with estimations of those sums.

The first two results were originally proved by Weil [59]. Later, Stepanov [53] in-
troduced an elementary method, that was furtherly simplified by Schmidt [52], which
is able to prove such results. Detailed description and demonstration of this method,
known as the Stepanov-Schmidt method, can be found in classic textbooks [44, 52].

Theorem 2.10. Let y be a non-trivial multiplicative character of order n, and F € F n[X]
such that F # yH? ~%, for any y € Fyn and H € Fyu[X]. If F has | distinct roots (in its
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splitting field), then

> x(Ex)| < (1-1)g™2

x€Fm

Rough sketch of the proof. If | = 1, the result follows immediately from Lemma 2.2.
For | > 2, first assume that F is monic. Using the Stepanov-Schmidt method, we
conclude that

> AE) = 0t~ - iy,

X€EF gms

for all s € Z>; and some w; € C*. Weil’s theorem on the Riemann hypothesis for
function fields, yields that for all i, we have that |w;| = qm/ 2 and the result follows,
if we consider the case s = 1. If Fis not monic, we multiply the original sum with
x(y71), where y is the leading coefficient of F and we end up with a sum which has
the same absolute value as the original and the polynomial involved is monic. O

Lemma 2.11 (Kloosterman sums). Let i be a non-trivial additive character. If y1, y» €
Fyn are not both zero, then

Z Y(yx+yox )| < 2¢™°

xE]F;m

Rough sketch of the proof. If exactly one of yy, y» is zero, then Lemma 2.2 yields that
our sum is —1 and the result follows. If both y;, y, are non-zero, using the Stepanov-
Schmidt method, we conclude that

Z PO (nx+ yox ') = —of — @3,

xE]F;,M

for all s € Z>; and some w; € C*. Weil’s theorem on the Riemann hypothesis for
function fields, yields that for i = 1, 2, we have that |;| = ¢"/? and the result follows,
if we consider the case s = 1. O

Remark 2.12. In both Theorem 2.10 and Lemma 2.11 one can avoid employing the
Riemann hypothesis for function fields and use the estimate |w;| < ¢™/?, that can be
deduced much easier and still provide enough to prove the desired bounds. Another
interesting remark is that the Kloosterman sum is a real number, since

Do vnx+yx ) = D Ylmx—yx ) = Y Ylnx+px ).

XE]F;‘,,, xEIF;‘m xe]F;m

Kloosterman sums were introduced by Kloosterman [42], who achieved an esti-
mate of order p*/* (where the sum run over the prime field F,). Weil [59] achieved
the bound shown above, which can be shown that is the best possible. For a detailed
account on Kloosterman sums, their history and generalizations the reader is referred
to [44, p. 252-257]. We will also encounter hybrid character sums, that is character
sums who involve an additive and a multiplicative character. The following theorem
provides us with an estimate for such sums with rational functions as arguments.
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Theorem 2.13. Let y be a non-trivial multiplicative character of order n and y be a non-
trivial additive character. Let F,G be rational functions in Fgn(X) such that F # yH",
foranyy € Fgn and H € Fogn(X), and G # HP — H + y, for any y € Fon and
H € Fgn(X). Then

Y XFENUGE)| < (deg(G)oe + 141 = 1" = 2)g™2,

x€Fgm\S

where S is the set of poles of F and G, (G) oo is the pole divisor of G, L is the number of
distinct zeros and finite poles of F inF g, I is the number of distinct poles of G (including
o0) and l” is the number of finite poles of F that are poles or zeros of G.

A slightly weaker (lacking the term [) version of the above theorem was initially
proved by Perel’'muter [50], but Castro and Moreno [5] improved the result to its
stated form. Recently, Cochraine and Pinner [6] presented a proof, which utilizes the
elementary Stepanov-Schmidt method, instead of concepts from algebraic geometry.

2.2 Vinogradov’s formula

In this section, we present a generalization of a characterization of elements with
special properties, attributed by modern bibliography, see [48, p. 183], to Vinogradov.
Before going further, notice that . can also be seen as a Z-module under the rule
rox:= x",wherer € Zand x € F;m and F » (the additive group), can be seen as an
F,[X]-module, under the rule Fo x := Y"1 Fix?, where F(X) = Y7 FX € F,[X]
and x € Fyn. The fact that primitive elements exist for every finite field and the
normal basis theorem, imply that both modules are cyclic, while the elements that
are interesting for us, i.e. primitive and free elements, are the generators of those
modules. It is now clear that we are interested in characterizing generators of cyclic
modules over Euclidean domains.

Let R be a Euclidean domain and M be a cyclic finite R-module, under the rule
rox, where r € Rand x € M. Further, let g € M be an R-module generator of M. By
definition, M has also the structure of an abelian group, hence M is well-defined and
can also be seen as an R-module, under the rule ro y : x+— y(ro x), for x € M and
X € M, while it is not hard to show that M is also cyclic. Also, note that throughout
this section we will coincide an element of R with its conjugates that the equivalence
relation r; ~ r, <= r; = ur,, for some u € R*, defines. In particular, whenever a
sum runs through the divisors of some element of R or when a definition applies to all
the members of a conjugacy class of R/ ~, just one representative will be considered.
This means that in the integer rings we will consider only positive numbers and in
the polynomial ring we will consider only monic polynomials.

Let x € M. It follows from our assumptions that the annihilator of x is an ideal
or R and, as such, has a unique generator. This is called the order of x and denoted by
ord(x). Set m := ord(g). It follows that for every x € M, we have that ord(x) | m.
The order of y, where y € M\ is defined accordingly.

Fix some r € R, with r | m. We call x € M r-free if x = d o y, for some d | r
and y € M implies d = 1. Clearly, x € M is an R-generator of M if and only if it is
m-free. The purpose of this section is to characterize r-free elements. For d € R, the
Euler function is defined as

¢o(d) == [(R/dR)".
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Here note that one can find examples such that ¢(d) = oo; nonetheless in the cases
we are interested in, that is d | m where m = ord(g), we have that ¢(d) < |(R/mR)| =
|IM]| < o0, since M = R/mR. 1t is also clear that x has order d € R, where d | m, if
and only if x = (fm/d) o g for some f € R, co-prime to r, while for fi, f; € R, co-prime
tor, fi = fo + kd for some k € Rif and only if (fim/d) o g = (fam/d) o g. It follows
that for all d € R, d | m, we have that

> 1= ) 1= (2.4)
€M, ord(x)=d x€EM, ord(x)=d

The Mobius function is defined as

(d) = (—1)k, if dis a product of k distinct irreducible elements of R,
&= 0, otherwise

and for d | m, we define 6(d) := ¢(d)/|(R/dR)|. The following variation of Lemma 2.2
will prove to be useful.

Lemma 2.14. Let x € M be an r-free element and d € R, with d | r. We have that
Z x(x) =0.
YEM, ord(x)|d

Proof. Set H := do M. Clearly, H is an R-submodule of M and the order of a
character of M divides dif and only if this characters is trivial on . Further, it is not
hard to see that there is a natural bijection between the characters of M /H and the
characters of M that are trivial on H. It follows from Lemma 2.2, that

Y@= ) xx+H)=0,
ord(y)|d TEM/H
since x + H # 0 + H, since x is r-free. O
We are now in position to characterize r-free elements

Proposition 2.15. The characteristic function for r-free elements is

d
W M—=C, x> e(r')z“((d; > x(),
dlr ¢ XEM, ord(y)=d
where ¥ stands for the square-free part of r.

Proof. First, observe that if d;, d, are co-prime divisors of ¥/, then for all x € M, we
have that

w4, (X)0a,(x) = w4,4,(x), (2.5)
o4 (<)o, (x) = 0(d;)6(dy) Z"Eei Y Z”g?) Y
e|dy ple ord(y)=e fld; ¢ ord(§)=f
—odd) 3 BD S () = waa ).

ef|di dy (P(ef) ord(yy)=ef
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Also, notice that the Mobius function in the definition of w, ensures that r may be
replaced by . This, along with Eq. (2.5) imply that

o =00 [ 1—@ ()] - 26)

p|r, pirreducible ord(y)=p

Now, assume that x is not r-free, i.e. there exists some irreducible p; | r such
that x = p; o y for some y € R Then for all y € M of order p1 we have that
x(x) = (p1 o y)(y) = 1 and Egs. (2.4) and (2.6) imply w,(x) = 0.

Finally, assume that x is r-free. It follows from Lemma 2.14 that }° , 3, _, X(x) =
—1 for all irreducible p | rand Eq. (2.6) gives

o= I ow- 22 1 1-n

plr, pirreducible plr, pirreducible

since for p irreducible, we have that R/pR is a field, thus ¢(p) + 1 = |R/pR|. O

Now it is time to return to the finite field case and to the two modules that we are
interested in, namely Fy» and F...

From now on, we call Order of x € Fgn (note the big ‘Q’) its additive order, that is
its order of an element of the Fy[X]-module F;», and denote it by Ord(x). This means
that Ord(x) € F4[X] and Ord(x) | X™ — 1. Further, we can also assume that Ord(x)
is monic for all x € Fyn. The Order of the additive character i is defined accordingly.
Moreover, for G | X™ — 1, we call x € Fgn G-free, if x = Ho y for some y € Fy» and
H | G, implies H = 1. According to Proposition 2.15, the characteristic function of
G-free elements is

2: Fp—C, x—0(G) ), &;) > ¥(x),

. =
F|G, Fmonic YEFgm, Ord(y)=F

where G is the square-free part of G, and y, ¢ and 6 are defined appropriately. Here,
we also note that elements that generate normal basis are exactly those that have
Order equal to X™ — 1, i.e. those that are (X™ — 1)-free, or F;-free, where F, is the
square-free part of X™ — 1, i.e. Fy := X™ — 1, where my is such that m = mopb and
(mo, p) = 1.

Similarly, order of x € F, (note the small ‘0’) stands for the multiplicative order
of x and denoted by ord(x). This means that ord(x) € Z, and ord(x) | ¢™ — 1.
The order of a multiplicative character is defined naturally. Also, for r | g™ — 1, we
call x r-free, if w | rand x = y" implies w = 1. According to Proposition 2.15 the
characteristic function for r-free elements is

w2 Fpn = C, x— 0(/)25((61 Z x(x),

dr )(G]P{q*;,ord()():d

==

where ¥ is the square-free part of r, and y, ¢ and 6 are defined appropriately. Further,
primitive elements are exactly those that have order equal to g™ — 1, that is those that
are (¢™ — 1)-free, or gy-free, where qq is the square-free part of g™ — 1.
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CHAPTER 3

The Hansen-Mullen conjecture for self-reciprocal irreducible
polynomials

In this chapter we present our results on the Hansen-Mullen conjecture for self-
reciprocal irreducible polynomials.

3.1 Preliminaries

We denote by I, the set of monic irreducible polynomials of degree n and by J, the
set of irreducible polynomials of degree n and constant term H, equal to 1. Further,
we set Gy = {He Fy[X] : deg(H) < kand Hy = 1}.

It is well-known, see [4], that if Q1is a self-reciprocal monic irreducible polynomial
over Fy, then deg(Q) is even and Q(X) = X"P(X + X ') for some P € I, such that
¥(P) = —1, where §/(P) = (P|X? — 4), the Jacobi symbol of P modulo X* — 4. Con-
versely, if P € T,,, with (P) = —1, and Q = X"P(X+ X~ !), then Qs a self-reciprocal
monic irreducible.

We denote P= Y7 PiX'and Q = Z?io 0;X', and we compute

0X) = X"P(X+ X 1) = Z PX"HXE + 1)

i=0
S e (i ()X) Ty (J)PX”
i=0 j=0 i=0 j=0

Since Q is monic and self-reciprocal, Qy = 1 and Q,,—; = Q;, so we may restrict
ourselves to 1 < k < n. The last equation implies that

o= 3 (’:>Pi= 3 <ki+,-)P,~,
J n—k<i<n T2

0<j<i<n
n—i+2j=k k—n+i€2Z

17
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and by making the variable change j = n — i we have

n—j
Q= E ( k—j )Pnj-
0<j<k 2
k—je2z

The coefficient Q is expressed in terms of the coefficients of the k largest degree
terms of P. In order to express O in terms of the coefficients of low degree terms of
a polynomial related to P, we define the polynomial P as follows.

Definition 3.1. Let G € F[X], deg(G) = n. We define G = X"G(4X1).
The following lemma summarizes the properties of the transformation.

Lemma 3.2. LetP € J,, n> 2. Then P € 1, P; = 4"'P,_,. Further, y/(P) = —ey/(P),
where
—1, ifnisevenorqg=1 (mod 4).
€:=
1, otherwise.

Proof. Since F is irreducible of degree n > 2, we see that Pis of degree n. 'I'hg irre-
ducibility of P follows from the fact that if 0 is a root of P, then 4/6 is a root of P, and
Fq(6) = Fy(4/0). The statement regarding the coefficients of Pis easily verified and

the one regarding ¥(P) is proven in [26, Lemma 2]. O

Let a € F; and suppose that there exists an irreducible polynomial P € J,, such

that /(P) = eand > o<j<k (i/)4P; = a. Then Lemma 3.2 implies that P e I, and
k—je27 "z

Y(P) = —1. If we let Q = X"P(X + X !), we have

n—j\a. n—j\ .
o= ("S- X (" )m-a
0<j<k 2 0<j<k 2
k—je2Z k—je2Z

For convenience, we define

{(',i_jj)4j7 ifk—j=0 (mod 2),
5_[: Zz

2

0, ifk—j=1 (mod 2).

We note that §; = 4% # 0. If we let P= H (mod X**1), for a polynomial H of degree

at most k — 1, the condition )" o<j<x (i_/)4'P; = a becomes
k—jc27 "z

This leads us to define the following map.

Definition 3.3. For n, k € N with 1 < k < n, we define

k
Tnk: Gy —Fy, Hrs Z 6;Hj.

=0

Our observations are summarized in the following proposition.
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Proposition 3.4. Letn,k € N, n > 2,1 < k < n, and a € F;. Suppose that there
exists an irreducible polynomial P € J,, such that /(P) = € and P = H (mod X*1)
for some H € Gy with 7, (H) = a. Then there exists a self-reciprocal monic irreducible
polynomial Q, of degree 2n, with Qx = a.

Later, we will need to correlate the inverse image of 7, with Gx_;. This is
achieved in the proposition below.

Proposition 3.5. Leta € Fg, n,k € N,n>2and1 < k< n. LetF = Zf:o FX €
Fq[X], with F, = 1 and F; = 5k_,-5,:1 1<i<k—1,andF = 5;1(50 — a). Then the
Map k- T;,l((a) — Gy—1 defined by o, o(H) = HF (mod X**1) is a bijection.

Proof. We start by showing that the map is well-defined. The polynomial o,  .(H), by
its definition, is of degree at most k and has constant term equal to 1. The coefficient
of X* of On,k,a(H) is Hy + Hy + Zj’.;l H;F_;. Noting that 7, x(H) = a, we compute

k—1 k—1
Fe+ He+ Y HFe = —ad; ' + 608 ' + Hededi ' + > Hido; !
j=1 j=1

k
= —ab ! + 5! (Z Hj5j> = —ab; ' + 8 ' rar(H) = 0.
j=0

This shows that deg(opk,.(H)) < k — 1, and the map is well-defined.
To see that the map is one-to-one, assume that there exist some Hy, H; € 7, ,(a)
such that o,k o(H) = 0 k«(Hz). This implies that

H,F = H,F (mod X1).

Since F is invertible modulo X!, we obtain H; = H, (mod X‘*!), which implies
H, = H, since deg(H, ), deg(H,) < k.

It is trivial that |G4_;| = ¢*~!. The proof will be complete once we show that
|T;7,1C(a)\ = ¢! Tt is clear that 7, is linear and surjective, therefore, the dimension
of its kernel is equal to k — 1. It follows that the kernel, and therefore the fibers of
Tnk, have cardinality ¢<—1. O

Remark 3.6. We easily check that in the above proof we may substitude 7, ; with an
arbitary F-linear 7 : Gy — F, such that 7(X¥) # 0, since this is the only property
of 7, we actually used.

3.2 Weighted sum

Letn,k € N,n>2,1< k< nanda € F,. Inspired by Wan’s work [57] we introduce
the following weighted sum.

wa(m k)= Y Alowea(H) > L (3.1)
Her ,(a) Pe],, y(P)=e
m P=H (mod X‘1)

It is clear that if w,(n,k) > 0, then there exists some P € J, such that P = H
(mod X¥1) for some H € Gy, with 7, 1(H) = aand /(P) = e. Then Proposition 3.4
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implies that there exists a self-reciprocal, monic irreducible polynomial Q, of degree
nwith Qr = a.

Let Ube the subgroup of (Fy[X]/X*"'F,[X])* that contains classes of polynomials
with constant term equal to 1. Then (F,[X]/X*'F,[X])* is the direct sum of U and
7. The set Gy_, is a set of representatives of U. Further, the group of characters of U
con51sts exactly of those characters of (Fy[X]/X*!F,[X])* that are trivial on F,, that
is, U= {y € (F,[X] ]/Xk+1Fq[)<]) : x(F;) = 1}. Using these observations and with
the help of Lemma 2.2, Eq. (3.1) can be rewritten as

p S A AuklH)H).

xeuﬁe)«ﬂn . Hef;;(a)

If we denote by G the inverse of Fmodulo X1 where Fas defined in Proposition 3.5,
and using Proposition 3.5, we obtain

7 2 P Y Ak ) Onia(H)O)

x€U l/jg)ﬂn HE‘L';;(G)
=5 X MPX©) Y AwXE).
)(EU l//fg)ﬂn HeGy_,

Separating the term that corresponds to y,, we have

7y(n, €) B
wa(n, k) - qk E E E § A(I—I)X(H) ’
HEGy_, )(;é)( l//l(’e)u]]n HEG_,
P)=e

where 74(n, €) = [{P € I, : ¢(P) = €}|. It is computed in [4],

B z—ln(q”fl) if n =29,
7y(n, —1) = L5 an u(d)gi, otherwise.
dodd
If n is not a power of 2, we have
q” 1 q n
”q(”»*l)*% < Zianlqg' (3.2)

Note that the bound remains true in the case that n is a power of 2. If n is even, then
e = —1. If nis odd then 74(n, —1) = 5~ Zdln,u(d)q% = 1my(n). Since mg(n, —1) +
7q(n,1) = my4(n), we conclude that m4(n,1) = m4(n,—1). Thus, in every case,
7¢(n, €) = mg(n, —1). Furthermore,

>.A ZZ H)Zq

HEG— m=0 deg(H
Hy= 1

Eq. (2.2) of Proposition 2.9 implies that

S A Zl+kq \q/zzl_ll.

HeGy_, m=1
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Putting everything together, and using Eq. (2.3) we have

w,(n, k) — (33)

1| < KE£5) (¢ = 1)(g ~ 1)g?
P | Y

The following theorem follows directly from this bound.

Theorem 3.7. Letn,k € N, n > 2,1 < k < n, and a € ;. There exists a monic, self-
reciprocal irreducible polynomial Q € F[X], of degree 2n with Qr = a if the following
bound holds.

k(k+5) bk

o, —1) 2 S (g 1),

Proof. From our previous discussion, it suffices to show that w,(n, k) > 0. Eq. (3.3)
implies that a sufficient condition is

¢ —1 k(k+5) (¢ — 1)(g* — gt

Fa-0 T T w gy
that is,
ryln 1) > S gt - 1) 6.4
The stated condition follows easily. O

Substituting the bound of Eq. (3.2) in Theorem 3.7, we obtain the following.

Theorem 3.8. Letn,k € N, n> 2,1 < k < n, and a € ;. There exists a monic, self-
reciprocal irreducible polynomial Q € F[X], of degree 2n with Qr = a if the following
bound holds.

n—k—1

16
q * Z?k(k+5)+

\CR

Proof. From Theorem 3.7 and Eq. (3.2), we see that a sufficient condition is

¢ 4 g _ k(k+5)
2n  g—12n — n

(Va+1)q .

Using the fact that qfql < % and \/q+1< ml—‘o/é for ¢ > 3, we obtain the sufficient
condition

i 16k(k+5) 3, .
= >~ 4 —gTs i
q = 5 2‘1
Since %qungr% < %, the condition in the statement follows. O

Remark 3.9. As pointed out in Remark 3.6 we could obtain more general results by
choosing an arbitary F-linear 7 : Gy — F,, such that 7(X¥) # 0. In this case, if the
bounds of Theorems 3.7 or 3.8 hold, then there exists some P € I, with ¢(P) = —1
and P = Hmod X**! for some H € 77(a), for any a € I,
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3.3 The restriction k < n/2

In this section, we content ourselves for k < n/2 and solve completely the resulting
problem. In particular, we use the theory developed previously in this chapter to
theoretically prove that the resulting problem can be answered positively for all, but
a small, finite number of possible exceptions. Then, with the help of computers, we
investigate the remaining cases one-by-one.

For k < n/2, Eq. (3.4) implies that there exists a monic irreducible self-reciprocal
polynomial over I, where q a power of an odd prime, of degree 2n with it’s k-th
coefficient prescribed, if

) > [n/2]([n/2] +5)<

n

Va+ 1) (g — 1) g2, (3.5)

7g(n, —1

With the help of computers, see Section A.1, we can use Eq. (3.5) to find pairs (g, n)
such that if ¢ is a power of an odd prime and n an integer, then there exists some
monic irreducible self-reciprocal polynomial over I, of degree 2n such that any of its
|n/2] low degree coefficients is prescribed. Such pairs are illustrated in Table 3.1.

Table 3.1: Pairs (g, n) that satisfy Eq. (3.5).

n 3 4 5 6 7 8 9 10
gl >149|>839 | >37|>59|>17|>23|>11|>13
nl 11 12 13 14 15 16 17 18
q|l =29 >9 >7 | 27| 25|27 25|25
nl 19 20 21 22 23 24 | 25 26
q|l =5 >5 >5| 25| 25| 25| 23| 25

Corollary 3.10. If n > 3 an integer and q a power of an odd prime, then there exists
a monic irreducible self-reciprocal polynomial over IF; of degree 2n such that any of its
|n/2] low degree coefficients is prescribed, if either n > 27 or g > 839.

Proof. 1t is clear that if the bound of Theorem 3.8 holds for some ¢, and k = n/2, then
it still holds for any g > g, and 1 < k < n/2. Also it is not hard to see that

n—g —1 16n /n 1
372 > — (— + 5) + -
10 \2 2

for all n > 27, since the function

is increasing for n > 27 and g(27) > 0. Further, from Table 3.1, we see that our
statement is true for g > 839. O

With the help of computers, we explicitly check the remaining cases, present in
Table 3.1. The program that performed this search is illustrated in Section A.1. The
results revealed that, under the restriction k < n/2, we have two (genuine) exceptions.
Those results’, combined with Corollary 3.10 imply the theorem below.

! Available online at http://www.math.uoc.gr/~gkapet/hm/hm-results. txt.
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Theorem 3.11. Let n > 3 an integer and q a power of an odd prime. If k < n/2 and
a € Fg, then there exists a monic irreducible self-reciprocal polynomial over F; of degree
2n such that any of its k-th coefficient is prescribed to a, unless

1. g=3n=3,a=0andk=1or
2.q=3n=4a=0andk=2.
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CHAPTER 4

Extending the (strong) primitive normal basis theorem I

In this chapter we solve Problem 1.4 completely. Namely, in Theorem 4.25, we prove
that the question can be answered positively, with the exception of an explicit small
list of genuine exceptions. Also we note that throughout this chapter we assume that
A= ( g Z) € GL,(IF;) has at most one zero entry, since the case where there are two
zero entries has already been covered in Theorem 1.3.

4.1 Some estimates

Let A= (9%) € GLy(Fy), q1 | o and F; | Fy, for i = 1,2, where qo and F, stand for
the radicals of g™ — 1 and X™ — 1 respectively; in particular Fp = X™ — 1. We denote
(q1, Fi, F;) by k and call it a divisor triple. Furthermore, we call an element x € Fgn
ka-free, if x is q;-free and Fi-free and (ax + b)/(cx + d) is F,-free. Also we denote
by N4 (k) the number of x € Fyn that are ks-free. We write 1| k, if1 = (dy, G, G;)
and d; | ¢; and G; | F; for i = 1,2. Further, w stands for (qo, Fy, Fy) and 1 stands
for (1,1, 1), while the greatest common divisor and the least common multiple of a
set of divisor triples are defined point-wise. A divisor triple p is called prime if it has
exactly one entry that is # 1 and this entry is either a prime number or an irreducible
polynomial. Finally, if two divisor triples are co-prime, then their product can be
defined naturally.

Example. Let ¢ = 7 and m = 4. In that case, g, = 30 (since g™ — 1 = 2400 = 2°-3.52
and2-3-5 =30)and F = X*—1 = (X—1)(X+1)(X*+1) € F;[X], since m = my = 4.
In that case, four distinct divisor triples would be €; := (3, X* — 1, X* + X* + X+ 1),
p: = (2,1,1), p; :== (1,X* + 1,1) and p; := (1,1,X — 1). It is clear that e,
P1, P2 and p; are non-trivial, co-prime divisor triples, while e, is non-prime and p;,
P and pj are primes. Also, since they are co-prime, we can define their product,
e:=¢€ PP Ps=(6X—1,X—1).

For r € N, set t, to be the number of prime divisors of rand #r the number of monic
irreducible divisors of F € [F,[X] and set W(r) := 2" and W(F) := 2". It follows that
> a ()] = W(r) and 3~ [4(G)| = W(F). In the proceeding section as well as in

25
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Chapter 5, an estimation for W(q,) will be necessary. The lemma below provides us
one.

Lemma 4.1. For any r € N, W(r) < ¢, ./"/% where ¢.o = 2°/(py---ps)"/® and
D1, - ., ps are the primes < 2° that divide r. In particular, we are interested in ¢, 1= c, 4,
d, := c.g and e, := c,15. Moreover, for all r € N we have that ¢, < 4.9, d, < 4514.7
and e, < 1.06 - 10%*.

Proof. Tt is clear that it suffices to prove the above for r square-free. Assume that
r=p;--psqi- - G, Where pr, ..., ps, q1, - - -, q: are distinct primes and p; < 2 and
q; > 2° We have that

—ostt _ 95 9. . .9 — 95(9a. . . 9a\l/a < os 1/a _ /a
W(r) =2 25.2---2=2529--. 29 < 2%(qy ... q) Cra?.

t times t times
For the computation of the estimates provided in the statement, see Section A.2. [J

Remark 4.2. The lemma above provides us universal estimates for the numbers ¢, d,
and e,. Nonetheless, given r, these numbers are easily computable and in some cases
better estimates can be employed, for instance ¢, < 2.9 for odd r. For the computer
functions used to compute sharper estimates in special cases, or the exact computation
of the above number, see Section A.2. In the proceeding sections, these numbers are
freely replaced by the above estimates, by (sharper) estimates or by their exact values,
in some cases without special notice.

Moreover, for k = (qi, Fy, ;) we will denote by flk) the product f{q,)f(F;)f(F2),
where fmay be 6, ¢, p or W. Before proceeding, we have to study a bit more the
behavior of the Order of an additive character.

Lemma 4.3. Let € E: be an additive character, then Y|, is trivial if and only if
Ord(y) | X" 1+ X" 2+ + 1.

Proof. Assume () = 1 for all « € F,. Let x € Fyn. We have that
(X"t ) o g(0) = P+ ) = (Trep, () = 1

since Try,, /r,(x) € Fg. It follows that X"~! 4 --- + 1 lies in the annihilator of ¥,
hence divided by Ord(y).

Conversely, assume that Ord(y) | X"~' + .- + 1. Let & € Fy. Since Try,, /r, :
Fgn — Ty is onto, there exist some x € Fn such that Try,, /r, (x) = a. Since Ord(y) |
X™1 4 ... 4+ 1, it follows that X™~! + ... + 1 lies in the annihilator of 1, thus

(Xm—l et 1) o w(x) =1 = ¢(Trqu/Fq(x)) =1 = ¢(a) =1. O

Lemma 4.4. Ifgcd(p, m) = 1, then {{|r, : ¢ € ﬁq\m, Ord(y) | X—1} = E‘\q,

Proof. From Eq. (2.4), it is clear that there are exactly q additive characters, whose
Order divides X— 1. Therefore, since ﬁ also has g elements, it suffices to show that for
any two distinct additive characters, whose Order divides X — 1, their restrictions on
IF, differ. Let ¢, /, be additive characters whose Order divides X—1 such that ¢, |r, =
¥, |, It follows that ¥, ¢, is trivial on Fy and Lemma 4.3 yields Ord(y, ¢,) | X" ' +
.-+ + 1. It is clear though that Ord(¢, ¢,) | X — 1 and it follows that Ord(y, ¢,) = 1,
ie. ¥, =1, O
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Lemma 4.5. Let G, G, € Fy[X] such that G\G, | X™ — 1 and gcd(Gy,G;) = 1. If
G ={yeFp :0rd(y) = G} (i=1,2)and & := {{ € Fpn : Ord(y) = G,G,},
then ., = &.

Proof. 1t is clear that |&,®,| = C 6. Let
Y, € &, and ¥, € B,. Set F = Ord(y,y,). It is clear that (¢,¢,)%% = y,, thus
F| G\G,. 1tis also clear that (,1,)" = v, that is ¢} = l_ﬁg Since Ord(¢}) | G,
and Ord((pg) | Gy, it follows that ¥} = ¢ = ¢, consequently G, | Fand G, | F, i.e.
GG, | F O

Clearly, our purpose is to show that Ny(w) > 0. The proposition below is our
first step towards this.

Proposition 4.6. Let A = (%) € GL,(F,) and k be a divisor triple. If (q, c) # (2,0)
and q™'* > 3W(k), then Na(k) > 0.

Proof. From the fact that w and (2 are characteristic functions, we have that:

Zw% )25, (x) 25, ((ax + b) /(cx + d)), (4.1)

where the sum runs over Fyn, except —d/cif ¢ # 0.
First, assume ¢ # 0. Eq. (4.1) gives

u(l
N =6 Y (1; S Xl b ). (42)
1k ¢ ord(y,)=di,
1=(d\,G1,Gy) Ord(y,)=G,
Ord(lﬁz):Gz

where

Xa(xes Y1, ¥,) == Z X1 (09, ()¢, ((ax+ ) /(ex + d))

x£—d/c

= D X"V, G(),

x£—d/c

for0 < ny < q"—2,G(X) = (1 X(cX+ d) + y2(aX + b))/(cX 4+ d) € Fy(X) and
y; € Fyn. Our first aim is to show that |X4(y,, ¥,, ¥,)| is bounded by 3¢™/2, unless all
three characters are trivial. Theorem 2.13 implies thatif n; # 0and G # HP — H + y,
for any y € Fgn and H € Fyn(X), then

‘XA(XD l//17 ¢2)| < 3qm/2.

If n; = 0 and at least one of y;, y, is non-zero, then by setting ¥’ := cx + d, we
have that
Voa — LY ¥ y(bc— ad)
Xa(xi: ¥ ¥,) = Z¢<2 lc +2ﬁ
X' #£0

=¥, <3’2“ > Z v, ()’lx (bC; ad)> ’
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which, combined with Lemma 2.11 implies | X4(y;, ¥, ¥,)| < 2¢™/2.

Assume G = HP — H + yfor some y € Fyn and H € Fyn (X). Write
H == Hl /Hz,
where Hi, H, are co-prime polynomials over F . If G # 0, then

G=H —H+y= YIX(CX+2)(1§z(aX+ b) _ Hfl’leHgfqug'

m%

It follows immediately from the restrictions on A that ¢X+ d is co-prime to y; X(cX +
d) + y,(aX + b) and it is clear that H) is co-prime to HY — HiH, ' + yHE, hence
¢X+ d = H, a contradiction since ¢ # 0. It follows that G = 0, which clearly implies
1=y, =0.

We have now shown that |Xs(y,, ¥/,, ¥,)| < 3¢™/?, unless all three characters are
trivial. This, combined with Eq. (4.2), implies

Na(k) > 0(k) [ ¢" —1-3¢"* > 0] o1,

1
1|k, 11 (0( ) XYY,

which combined with Eq. (2.4), gives:

m m 1
o) > ¢/ q/Z—T/Z—3Zﬂ(1)
q 1k, 141

> g (g — g = 3(W(k) — 1))

and the desired result follows.
Next, assume ¢ = 0. Working in a similar way as before, we conclude that Eq. (4.1)
gives

M=ot S MY S vt g, @)

11k (p(l) ord(y,)=di,
1=(d1,G1,G;) Ord(y,)=Gi,
Ord(y,)=G,

where Va(ys 1. ¥) = Focs 120 (9 ¥4) (9, for 9(x) i= yy(ax/d) for all x €
Fn, an additive character of the same Order as ¢/,. It follows from Lemma 2.2 and
Theorem 2.13, that if at least one of y, or (¢, ¥/;) is non-trivial, then | Ya(x,, ¥, ¥,)| <
q™'?. Now, Eq. (4.3) gives:

G > HE e (D) etwe. e

Glged(F,F) Ord(y,)=G

Eq. (4.4) suggests that a lower bound for the coefficient of ¢™ is desirable. Set F; :=
ged(FL B)/(X—1),if X—1| ged(F, ) and F := ged(F, F,) otherwise. Further, set
y := b/a # 0. It follows immediately from Lemma 4.3 that ¥/(y) = 1 for any additive
character {y whose Order divides F;. First, suppose X — 1 | ged(F, F;). With the help
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of Lemmata 2.2, 4.4 and 4.5, we evaluate:

> 23T

G\gcd(Fl,Fz) Ord(y)=G
=2 2@ 2 YW s 1)@) v ()
G|F; Ord(¢) G G|F Ord(y X 1)G
1
_; ;c; ¢*(X=1)G) Ord%l: hlr ord(y/z) —X—1 Vv
(. 1 1 qlg—2)
-( ¢<X1>Z>GZ|;;¢<G> (417 %m > H5

Similarly, if X — 1 { ged(F,, F;), then

4#(0) v
2 e, TG

Glged(Fi,F) Ord(y)=G

Summing up, the coefficient of ¢ in Eq. (4.4) is, in any case, larger than ¢(q¢—2)/(q—
1)2. It follows that a sufficient condition for N4(k) > 0 would be

q"? ((]C(]q_jz) > W(k),

which clearly implies the desired result for g # 2. O

Remark 4.7. If q = 2, then the left part of the last inequality of the above proof is zero
and the inequality is always false. This is a consequence of the fact that, in this case,
A = (}1), hence our demand is to exists some free x, such that x + 1 is also free,
which is impossible for odd m. On the other hand for m even, x is free if and only if
x+ 1is free, i.e. the resulting problem is always true from Theorem 1.2.

Remark 4.8. 1t is clear in the last lines of the proof of the above, that a weaker condition
for Na(w) > 0 could be achieved, if we restricted ourselves to the case ¢ = 0.

4.2 The sieve

Following Cohen and Huczynska [12, 13], we introduce a sieve that will help us get
improved results. The propositions below are those of Cohen and Huczynska [13],
adjusted properly.

Let k = (qi, Fi, F,) be a divisor triple. A set of complementary divisor triples of
k, with common divisor K is a set {ky,...,k,}, where the k;’s are divisor triples,
such that k; | k for every i, their least common multiplier is divided by the radical
of k and (k;, k;) = ko for every i # j. Furthermore, if ky,...,k, are such that
k; = kop;, where py, ..., p, are distinct prime divisor triples, co-prime to kj, then
this particular set of complementary divisors is called a (ky, r)-decomposition of k. For
a (ko, r)-decomposition of k we define § := 1—>""_, 1/|p;|, where |p;| stands for the
absolute value of the unique entry # 1 of p;, if this entry is a number, and g°&(F), if
this entry is F € F[X]. Finally, we define A := (r—1)/6+ 2. The following continues
the example in page 25 and helps us understand the new concepts defined here.
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Example. Make all the assumptions of the example in page 25. Further, set e; :=
(6, X*—1, X+ X0+ X+1),e; := (3, X} -1, X+ X+ X+1) and e; := (3, X°+1,X*—1).
Clearly, {e;,e;, €3} is a set of complementary divisors of e with common divisor

€y, since p;, p; and p; are co-prime to € and eyp; = e; for i € {1,2,3}, hence
{e1, ez, e;} is a (e, 3)-decomposition of e. For this decomposition, we compute § =
17— 7%—% —andAfé

Proposition 4.9 (Sieving inequality). Let A € GL,(IFy), k be a divisor triple and
{ki,...,k,} be a set of complementary divisors of k with common divisor ky. Then

) > ZNA (r—1)Na(ko).

Proof. The result is trivial for r = 1. For r = 2, denote by S(k) the set of elements
that are k,-free over IF, and with S(k;) the set of elements that are (k;)4-free over
g, where i = 0,1,2. Then S(k;) U S(k;) € S(k¢) and S(k;) N S(k,) = S(k).
The desired inequality follows after consideration of cardinalities. Suppose the result
holds for r = k > 1. For r = k+ 1, if we denote by k’ the least common multiplier of
ks, ..., Kgy1, then it is clear that {k’, k; } is a set of complementary divisor triples of
k with common divisor k. The desired result follows immediately from the induction

hypothesis. O

Proposition 4.10. Let A = (2%) € GL,(F,), k be a divisor triple with a (ko,r)-
decomposition, such that § > 0 and ko = (q1, Fi, F). If (q,¢) # (2,0) and ¢"/? >
3W(ko)A, then Ny(k) > 0.

Proof. Let py, ..., P, be the primes of the (ko, r)-decomposition. Proposition 4.9 im-
plies
Na(k) > 8Na(ko) + Z (NA(koPi) - (1 p ) NA(kO)> . (4.5)
i=1 bi

Suppose ¢ # 0. Taking into account the analysis done in the corresponding part of
the proof of Proposition 4.6, Eq. (4.5) implies

T >6|q"—1+ > U +;(1_|1:1i|>ZU(lpi)7

1k, 11 1k,

where the absolute values of the expressions U does not exceed 3¢™/2. Since § > 0,
we conclude that Ny (k) > 0, if

8q™* > 3W(ko) <5+Z< |p|>>

and the result follows, since >_'_, (1 — 1/|p;|) = r— 1+ 8. Next, assume ¢ = 0 and
q # 2. Taking into account the analysis performed in the corresponding part of the
proof of Proposition 4.6, Eq. (4.5) imples

Na(k) - 1 |
ik )>5 kq™" + Z Z<1—| >ZU(1pl),

1k, 141 i=1
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where k > g(q — 2)/(q — 1)? and the absolute values of the expressions U is smaller
than ¢™/2. As before, it follows that N (ko) > 0, if g™/ > k' W(k,) A, which clearly
implies the desired result, since x > 3/4 for ¢ > 3. O

It is well-known, that F, = [] djmy Qa» where Qg is the d-th cyclotomic polynomial.
The d-th cyclotomic polynomial splits into ¢(d) /s, distinct monic irreducible polyno-
mials of degree s;, where s; is minimal such that d | ¢* — 1. For a detailed account
of the above, the reader is referred to [44, §2.4]. It follows that F, splits into ¢(mg)/s
monic irreducible polynomials of degree s := s,,, and some other polynomials of de-
gree dividing s. We denote the product of those with degree s by G,. The proposition
below will prove to be useful.

Proposition 4.11. Let A = (25) € GLy(F,), (¢.¢) # (2,0), {k,...L} be a set of

c

distinct primes (this set may be (), in which case t = 0) dividing q, and ry := deg(Fy/Gp).
If

miz o 3 2 q¢'(2(my — 1) +s(t— 1))
g’ > ot W(qo) W*(Ey/Go) <sq5 (l — 22:1 1/li) —2(mo — 1v) i 2) 7

then Ny(w) > 0, provided that the above denominator is positive.

Proof. Let Gy = [[;_, Gibe the factorization of G, into monic irreducible polynomials.
Consider the (ko, 2r; + t)-decomposition of w, where

ko = (qo/ﬁli,Fo/Go,Fo/Go> :

i=1

Clearly, the prime divisor triples of this decomposition are exactly those who have
exactly one # 1 entry and this entry is either [, for some i = 1,.. ., or G;, for some
i=1,...,r. Proposition 4.10 implies that Ny(w) > 0, if

3 2r +t— 1
m/2 > W WZ F /G 1 +2
¢ > W)W R/ G \ T s e T2
that is
3 *(2sry + s(t— 1))
m/2 > — W Fy/ G a - 2.

q ot (90) WA(Fo/Go) sq° (1 — Zlle 1/li) — 281

The desired result follows immediately, since sr; = my — 1. H

We will call the primes used above sieving primes.

4.3 The case m = 2

Before continuing further, we focus on the delicate case m = 2. Although Propo-
sition 4.11 holds in that case as well, much weaker conditions for N4(w) > 0 can
be established. Moreover, the fact that this case is absent in related previous works
[12, 13] makes this case more interesting. First of all we note that, granted that x € F
is primitive, then x is free and (ax + b)/(cx + d) is (X + 1)-free. It follows that
Ni(w) = Na(qo, X — 1), where

Nalqi, F) : qul V02, ((ax+ b)/(cx+ d)), (4.6)
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where ¢, | qo, Fi | X — 1 and the sum runs over Fp, except —d/cif ¢ # 0. The
proposition below provides us with a sufficient condition for Na(q, F;) > 0.

Proposition 4.12. Suppose m = 2. Let A= (%) € GLy(F,), qi | qo and F; | X — 1.
If(q7 C) 7é (210) andq > W(ql)W(Fl)l then NA(qlvFl) > 0.

Proof. As in Proposition 4.6, first assume that ¢ # 0. Eq. (4.6) implies

(d)p(Fy)
Na(q, Fr) = 0(q)0(F) S BUE Zaltss )
) 1 ; o(dr)p(F,) ;_ x

Gi|R Ord(y,)=G;

where Za(x;, ¥,) = >z a/e X1 () ¥, ((ax+ ) /(cx+ d)). As in the proof of Propo-
sition 4.6, we use Theorem 2.13 to show that |Z4(x;, ;)| < g, unless both y, and ¥,
are trivial. It follows that

Na(qi, Fr) 2
== >q¢ —1—qW(q)W(F,) — 1),
which implies the desired result. Next, assume ¢ = 0. As before, Eq. (4.6) yields
u(dr)p(F
NA(CII;FI) = Q(ql)G(Fl) Z Edlg((];)) Z wl(b/d)WA(Xla ¢1)7
di|qu PLee ord(y,)=d
Gi|F Ord(y¢,)=G,

where Wa(x,, ¥1) = > er, X1(x)¥,(ax/d). Again, Lemma 2.2 and Theorem 2.13
q
imply [Wa(x,, ¥,)| < ¢, unless both y, and ¢, are trivial. t follows that

NA(ql, Fl)
0(q1)6(F1)

which implies the desired result. O

> q — qW(q)W(F) — 1),

The above is enough to give us results, but, as in the general case, sieving can be
used to give us improved results. The proofs of the analogues of Propositions 4.9, 4.10
and 4.11 in this case are straightforward. We state the analogue of Proposition 4.11.

Proposition 4.13. Suppose m = 2. Let A = (9%) € GLy(F,), (q.¢) # (2,0),
{L,... L} be a set of distinct primes (this set may be (), in which case t = 0) dividing .

If
W(qo) t
T (1_22_11/li—1/q+2>,

then Na(w) > 0, provided that the above denominator is positive.

4.4 Evaluations

Proposition 4.11 implies that some knowledge regarding the factorization of F, can
improve our results. In this section we, at least to some point, describe the factoriza-
tion of Fy and then use the theory presented earlier, in order to prove our results. All
non-trivial calculations described in the proofs of this section were performed with
Sage and the commands used are present in Section A.2. Moreover, in this section we
assume that A = (¢%) € GL,(F,) and (g, ¢) # (2,0). The lemma below (analogue
to [13, Lemma 2.5]) will prove to be useful.
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Lemma 4.14. [fm =3 or4 and g = m — 1 (mod m), then
Na(W) = Na(go, X" 2 — 1, X" 72 — 1).

Proof. Assume m = 4. It suffices to show that if some x € F is (qo, X* — 1, X% —
1)s-free, then x is wy-free. Let x be (qo, X2 — 1, X2 — 1)a-free. Clearly, X* + 1 is
irreducible over IF; and if xis not (X4 — 1)-free, then there exists some y € F ¢'> such
that x = y‘f + yie x= X impossible since x ¢ Fz. The same argument applies
to (ax+ b)/(cx + d) and the result follows. The proof for the case m = 3 is almost
identical. O

Proposition 4.15. Suppose that (q, m) is such that m > 2 and my < 4. Moreover,
suppose that if m = 3 orm = 4, then ¢ £ 1 (mod m). Then Ny(w) > 0 for all pairs
(q, m) not listed in Table 4.1.

Proof. 1t follows from Proposition 4.6 and Lemma 4.1, that Na(w) > 0, if
gt > 3c,,4™. (4.7)

The above holds for ¢ > 17 and m > 12, since ¢, < 4.9.

For ¢ = 16, we have that ¢;, < 2.9 and my < 3, hence Eq. (4.7) is satisfied for
m > 10. For g = 13, we have ¢;,, < 4.7 and Eq. (4.7) holds for m > 13. If ¢ = 11,
then ¢;, < 4.5 and Eq. (4.7) is true for m > 14. If ¢ = 9, then ¢, < 3.2 and Eq. (4.7)
is satisfied for m > 15. For q = 8, we have that ¢;, < 2.9 and m; < 3, ie. Eq. (4.7)
holds for m > 13. If ¢ = 7, then Eq. (4.7) is true for m > 17, since ¢4, < 4. For g = 5,
we see that Eq. (4.7) holds for m > 20 and ¢;, < 3.7. For ¢ = 4, we can assume that
my < 3 and ¢; < 2.9 and it follows that Eq. (4.7) is satisfied for m > 19. If ¢ = 3,
then ¢;, < 2.9 and Eq. (4.7) holds for m > 29. Finally, of ¢ = 2, then ¢;, < 2.9 and
my < 3 and Eq. (4.7) holds for m > 37.

For m = 11, we have my = 1and ¢, < 4.5,1i.e. Eq. (4.7) holds for g > 5. If m = 10,
then my = 2 and ¢;, < 3.7 and Eq. (4.7) holds for ¢ > 8. For m = 9,8, 0r 7, my = 1
and ¢g, < 3.2, 2.9 and 4 respectively, thus Eq. (4.7) is true for ¢ > 6, if m = 9 or 8,
and for ¢ > 10, if m = 7. If m = 6, then my may be 2, in which case ¢;,, < 3.2 and
Eq. (4.7) holds for g > 29, or 3, in which case ¢;, < 2.9 and Eq. (4.7) holds for q > 68.
If m = 5, then my = 1, ¢, < 3.7 and Eq. (4.7) is satisfied for ¢ > 21. If m = 4, then
my may be 1, in which case ¢4, < 2.9 and Eq. (4.7) holds for g > 35, or 4, in which
case, accounting Lemma 4.14, we may assume that my = 2 and ¢, < 4.9, i.e. Eq. (4.7)
is satisfied for ¢ > 235. Finally, if m = 3, thanks to Lemma 4.14 we can assume that
my = 1 and ¢4 < 3.2, hence Eq. (4.7) holds for g > 130.

A careful reading of the above reveals that there is a total of 86 possible exceptions
(g, m), namely

(16,6), (16,4), (9,12), (9,6), (8,12), (8,6), (7,14), (7,7), (5, 15), (5, 10), (5,5),
(4,16), (4,12), (4,8), (4,6), (3,27), (3,18), (3,12), (3,9), (3,6), (2,32), (2, 24),
(2,16), (2,12), (2,8), (2,6), (64,6), (12,6), (27,6), (2,4), (4,4), (8,4), (16,4), (32,4),
(3,4), (7,4), (11,4), (19,4), (23,4), (27, 4), (31,4), (43, 4), (47,4), (59,4), (67,4),
(71,4), (79,4), (83,4), (103,4), (107,4), (127,4), (131,4), (139,4), (151,4), (163, 4),
(167, 4), (179, 4), (191, 4), (199, 4), (211, 4), (223,4), (227,4), (2,3), (3,3), (5,3),
(8,3), (9,3), (11,3), (17,3), (23,3), (27,3), (29,3), (32,3), (41,3), (47,3), (53,3),
(59,3), (71,3), (81,3), (83,3), (89,3), (101,3), (107, 3), (113,3), (125,3) and (128, 3)
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According to Proposition 4.10, for our purposes, it also suffices to show that

3W(qo)d™  st—1
m/2 . ( 2)
T Ty 5 T4

where {I;, ..., 1} are distinct primes dividing g, and § := 1 — >_;_, 1/I; should be
> 0. This is satisfied for 53 pairs (g, m). In particular, the pairs

(16,4), (9,12), (8,12), (7,14), (7,7), (5,15), (5, 10), (4, 16), (4,8), (3, 27), (3,18),
(3,9), (2,32), (2,16), (64,6), (27,6), (16,4), (32,4), (59,4), (67,4), (71,4), (79,4),
(83,4), (103,4), (107,4), (127,4), (131, 4), (139,4), (151,4), (163, 4), (167, 4),
(179,4), (191, 4), (199, 4), (211,4), (223,4), (227, 4), (17,3), (27,3), (32,3), (41, 3),
(47,3), (53,3), (59, 3), (71, 3), (81, 3), (83,3), (89,3), (101, 3), (107, 3), (113, 3),

(125,3), (128,3)

were settled with () as the described set of primes, i.e. no multiplicative sieving was
necessary. For the pairs (16,6), (4,12) and (2, 24) the set {241,17,13,7,5} was our
set of sieving primes. For the pairs (9, 6) and (27, 4) this set was {73, 13,7,5}. For the
pair (12, 6), this set was {157, 19,13, 11,7}; for (31,4) it was {37,13,5}; for (43,4)
it was {37,11,7}; for (47,4) it was {23,17,13} and for (29, 3) it was {67,13}. The
remaining pairs are listed in Table 4.1. O

The following two propositions deal with the special case m, | ¢ — 1.

Proposition 4.16. If my = q— 1 and m > 2, then No(w) > 0 for all (g, m) not listed
in Table 4.1.

Proof. Here, F, splits into g — 1 linear factors. We choose a (ky, r)-decomposition of
w, where kg = (qo, G, G), for G | F, with 1 < deg(G) < g — 1. In that case all the
2(q — 1 — deg(G)) primes of the decomposition have absolute value g.

For q odd choose deg(G) = (¢—1)/2. In that case § = 1/q, A = (¢—1)* + 1 and
W(G) = 2(4=1/2 and Proposition 4.10 implies that Ny(w) > 0, if

q"* >3-297((¢ - 1)* + 1) W(qo). (4.8)

For g even choose deg(G) = q/2. Now, § = 2/q, A = (¢* —3q4)/2, W(G) = 29/% and
Proposition 4.10 yields that if Eq. (4.8) holds, then Ns(w) > 0, in that case as well.
With the help of Lemma 4.1, Eq. (4.8) may be replaced by

g7t >3-4.9.297((g— 1) +1). (4.9)

First of all we can restrict ourselves to pairs (q, m) with q > 3, since those cases
have already been investigated in Proposition 4.15. After keeping in mind that my, =
q — 1, we easily check that Eq. (4.9) holds for ¢ > 43 and m > my. If m > 2mj, then
Eq. (4.9) is satisfied for any g > 14. If m > 3my, then Eq. (4.9) is satisfied for ¢ > 9. If
m > 4my, then Eq. (4.9) holds for ¢ > 7. For m > 5my, Eq. (4.9) is true for ¢ > 6 and
if m > 7my, then Eq. (4.9) holds for any q > 4.

A careful interpretation of the above shows that the 20 pairs

(41,40), (37,36), (32,31), (31,30), (29, 28), (27, 26), (25, 24), (23, 22), (19, 18),
(17,16), (16,15), (13, 12), (11, 10), (9,8), (8,7), (7,6), (5,4), (4,3), (8, 14) and (5, 20)
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have not not been shown to satisfy Eq. (4.9) yet, after we exclude those that have been
investigated in Proposition 4.15. A quick computation reveals that 12 of them satisfy
Eq. (4.8), if each appearing quantity is computed explicitly. The remaining 8 pairs are
listed in Table 4.1. O

Proposition 4.17. Ifmy | ¢— 1, my # q— 1 and m > 2, then Ny(w) > 0 for all (q, m)
not listed in Table 4.1.

Proof. In our case, Gy = Fy and s = 1 and it is clear that the denominator of the
inequality in Proposition 4.11 is positive, since my < (q — 1)/2. It follows that
NA(W) > 0if

2my — 1)
m2 s 3w azm —1) ) 4.10
q (q0) q— 2ms + (4.10)
Lemma 4.1 implies that another sufficient condition for our purposes would be
2my — 1
gt >3-4.9 (Qijfg___ZF2> . (4.11)
q—2my

The above equation is always true for my > 12, provided that my < mand ¢ >
2my + 1. If my = m = 11, then Eq. (4.11) is satisfied for g > 24, while it is always
true if m > my = 11. The same holds for my = 10, and q¢ > 23, for my = 10 and
q > 23, for my = 9 and q > 24, for my = 8 and ¢ > 26, for my = 7 and q > 31
and for my = 6 and ¢ > 41. If m = my = 5, then Eq. (4.11) is true for ¢ > 66. If
m = 2my and my = 5, then Eq. (4.11) is true for g > 13, while it is always true for
m > 3my and my = 5. If my = m = 3 or 4, then Eq. (4.11) is satisfied when ¢ > 139
or 488 respectively, while the cases when my = 3 or 4, but m > my have already been
investigated in Proposition 4.15.

Summing up, we end up with a set of 89 pairs (g, m), in particular

(23,11), (19,9), (17,8), (25,8), (29,7), (13,6), (19,6), (25,6), (31,6), (37,6), (11,5),
(16,5), (31,5), (41,5), (61,5), (9,4), (13,4), (17,4), (25,4), (29,4), (37,4), (41,4),
(49,4), (53,4), (61,4), (73,4), (81,4), (89,4), (97,4), (101, 4), (109,4), (113, 4),
(121,4), (125,4), (137,4), (7, 3), (13,3), (16, 3), (19,3), (25, 3), (31,3), (37,3), (43, 3),
(49,3), (61,3), (64,3), (67,3), (73,3), (79,3), (97, 3), (103, 3), (109, 3), (121, 3),
(127,3), (139, 3), (151, 3), (157,3), (163, 3), (169, 3), (181, 3), (193, 3), (199, 3),
(211,3), (223,3), (229,3), (241,3), (256, 3), (271, 3), (277, 3), (283, 3), (289,3),
(307,3), (313, 3), (331, 3), (337, 3), (343,3), (349, 3), (361, 3), (367,3), (373, 3),
(379,3),(397,3),(409,3),(421,3),(433,3),(439,3),(457,3),(463,3) and (487, 3)

not yet shown to satisfy Eq. (4.11). Nonetheless, an exact computation reveals that
only 20 of them fail to satisfy Eq. (4.10). Moreover, the pair (121, 3) satisfies the de-
mands of Proposition 4.11, where {37} is the mentioned set. The same holds for (79, 3)
and {43}, for (67, 3) and {31}, for (61, 3) and {97}, for (49, 3) and {43}, for (43, 3) and
{631}, for (37,3) and {67}, for (31,3) and {331, 5}, for (29, 4) and {421} and, finally,
for (16,5) and {41, 31}. The remaining 10 pairs (q, m) are listed in Table 4.1. O

Next, we focus on the case my; > 4 and s # 1. Following Cohen and Huczyn-
ska [12, 13], we define p := tg G,/ mo, Where tg /g, stands for the number of monic
irreducible factors of Fy/G,. Furthermore, Proposition 4.11 implies that Ny(w) > 0,
if

2¢°(1 — —sq°
sq° — 2(1 — p)mo
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since tg, /g, < 1o and pmy = t /G, -The lemma below, proven in [12], provides us an
estimation of p, for g > 4.

Lemma 4.18. Assume my > 4 and q > 4.

1. If my = 2gced(m, q — 1) with q odd, then s =2 and p = 1/2.

2. Ifmy =4ged(m,q— 1) withq=1 (mod 4), then s = 4 and p = 3/8.
3. Ifmy =6ged(m,q— 1) withq=1 (mod 6), then s = 6 and p = 13/36.
4. Otherwise p < 1/3.

Proposition 4.19. Ifmy > 4,q > 4,s# 1 and p > 1/3, then Ny(w) > 0, unless (q, m)
is listed in Table 4.1.

Proof. According to Lemma 4.18, p may be 1/2, 3/8 or 13/36. First, assume p = 1/2.
A careful view of Lemma 4.18 implies that in that case 4 | my, i.e. since my > 4 we can
assume that my > 8 With the help of Lemma 4.18, Eq. (4.12) yields another condition
for Na(w) > 0, namely

2 _2)
m/2 < 3. om q(qi 2.
q (q0) q27q+1+

This inequality is satisfied for all ¢ > 4 and my > 8, if m > my, where we assume that
W(qo) < 4.9¢™%, from Lemma 4.1. If m = my, it is satisfied for m > 8 and q > 1863
and for m > 33 and q > my/2 + 1, where W(q,) < 4514.7¢™/%. Since my < 2(q — 1),
it follows that for our exception pairs (g, m), if any, 8 < m < 32 and 5 < ¢q < 1861.
In this region there are 310 pairs, such that m = my = 2 ged(m, ¢ — 1). Among those
pairs only 22 fail to satisfy

2 _2)
m/2 S 3 wge)em (L2 (m 2
¢ > swigzn (T80 1)

another condition deriving from Lemma 4.18 and Eq. (4.12), for W(g,) < 4.9¢™/*.
Those pairs are

(5,8), (13,8), (29, 8), (37,8), (53, 8), (61,8), (101, 8), (109, 8), (125, 8), (7, 12),
(19,12), (31,12), (43, 12), (67, 12), (9, 16), (25, 16), (41, 16), (11, 20), (31, 20),
(13,24), (37,24) and (17, 32)

Among those, (5,8), (7,12), (9, 16) and (13, 8) are the only pairs that fail, if W(qp) is
computed explicitly, but (9, 16) satisfies the resulting inequality, if we apply multi-
plicative sieving as well, with {21523361, 193} as our set of sieving primes.

Next, assume p = 3/8. With the help of Lemmas 4.1 and 4.18, Eq. (4.12) gives
another condition for Na(w) > 0, namely

5¢° — g* — 10g + 10
q3’"/3>3-23’”0/4-4514.7~< -9~ )

4¢* —59+5

This inequality is always true for m > my. If m = my, then this inequality holds,
for m > 16 and ¢ > 37, m > 32 and g > 11, m > 48 and q > 8 and for m > 144
and q > 5. After taking into account the implied restrictions from Lemma 4.18, it
follows that the possible exception pairs are (5, 16), (13, 16), (29, 16) and (9, 32), but
only (5, 16) fails to satisfy

4(5m — 16)
iz gw(gy)2m/t (120 2 ( 2
q (q0) Tog —5m 1 2)
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another condition deriving from Lemma 4.18 and Eq. (4.12).
Finally, assume p = 13/36. With the help of Lemma 4.18, Eq. (4.12) gives another
condition for Ny(w) > 0, namely

23¢°(q—1) — 18
q"? > 3W(go)213m/18 < AUt ¢ + 2) .

18¢° — 23(q — 1)
This inequality is always true, if m > my and W(q,) < 4514.7¢™/®. It is also true for
m = my > 36 and q > 10 and for m = my > 72 and q > 7, for W(qy) < 4514.7¢™/8.

It follows from Lemmas 4.1 and 4.18, that the only possible exception pair is (7, 36),
which satisfies the above inequality, if W(qy) is exactly computed. O

Proposition 4.20. Ifmy > 4,q > 4, s # 1 and p < 1/3, then Ny(w) > 0, unless (q, m)
is listed in Table 4.1.

Proof. We begin with the case my > 8. In that case, see [13, Lemma 6.5], the function

flp) = apm 2¢°(1 — p)my — sq°
sq® —2(1— p)my

is increasing (for p), when 0 < p < 1/3. It follows that it suffices to prove Eq. (4.12)
when p = 1/3. Moreover, since my < ¢, and s > 2, it follows that

2q°(1 — p)mo — sq°

+2<2my— 1,
sqg® —2(1— p)my = Mo
that is Eq. (4.12) implies that if
g% > 3W(qe)4™/3 (2my — 1), (4.13)

then Ny(w) > 0. With the help of Lemma 4.1, we see that this inequality is true for
m>8,q>95and W(q) < 4.9¢"/%, and m > 106, ¢ > 5 and W(qo) < 4514.7¢"/%.
In the remaining region, there are exactly 2675 pairs (g, m), who not fall in some case
examined so far, but only 430 do not satisfy Eq. (4.13), for W(qo) < 4.9¢"/* and just 31
who fail to satisfy Eq. (4.13), if we compute W(qo) explicitly. A computation reveals
that all of, except (5, 9), (5,12), (7, 8) and (7, 9) them satisfy Eq. (4.12), if all mentioned
quantities (i.e. p, sand W(q)) are replaced by their exact values.

Next, we focus on the case 5 < my < 7. Since p < 1/3 and s > 2, it is clear that
W(F,) < 2*™/3 hence Proposition 4.6 and Lemma 4.1, yield that Ny (w) > 0, if

gt >3-4.9.42m/3,

This condition is satisfied when m > 5 and q¢ > 347 and for all ¢ > 5 and m > 5, if
m > 4my. It follows that there are exactly 184 pairs (g, m) in that region fulfilling all
restrictions. Among these pairs only (5, 6), (7,5), (8,5), (9,5), (11,6), (17,6), (23,6)
and (29, 6) fail to satisfy Eq. (4.12), with all appearing quantities computed explicitly.

Finally, we can successfully apply multiplicative sieving as well for most of the 12
remaining pairs. Namely, for (5,9) our set of sieving primes was {829, 31}, for (7, 8)
was {1201, 5}, for (7,9) {1063, 37, 19,3}, for (8,5) {151,31}, for (9,5) {61, 11}, for
(17,6) {307}, for (23,6) {79} and for (29, 6) {271}. The remaining pairs are listed in
Table 4.1. O

Our next aim is to prove our result when 2 < ¢ < 4 and my > 4. The lemma
below, proven in [12], is very useful towards that proof.
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Lemma 4.21. Suppose my > 4. If q = 4 and m & {9,45}, then p < 1/5. If ¢ = 3 and
m+# 16, then p < 1/4. If q=2 and m & {5,9,21}, then p < 1/6.

Proposition 4.22. If my > 4, s # 1 and q < 5, then Ny(w) > 0, unless (g, m) is listed
in Table 4.1.

Proof. First, assume ¢ = 4. Lemma 4.21 implies that if m # 9,45, then p < 1/5.
Moreover, Proposition 4.6 and Lemma 4.1 imply that Na(w) > 0, if ¢"/* > 3.2.9 -
43m/5 since here W(F,) < 4°™/5. This condition is satisfied for all my > 4, if m >
4my. Working as in the proof of Proposition 4.20, we end up for another condition for
Na(w) > 0, for m # 9,45, namely

¢m® > 3.2461.7 - 4™/5(4m — 3).

This is true for m > 60 if m = my and for m > 35 if m = 2my. We end up with 28
pairs (4, m) left to consider. Among those pairs, only (4,5), (4,7), (4,9) and (4, 15)
fail to satisfy Eq. (4.12), if all appearing quantities (i.e. p, W(qo), sand my) are replaced
by their exact values.

Next, assume g = 3. If m # 16, then Ny(w) > 0, if q’"/4 > 3.3.2.45m/8 4
before. This is satisfied for all my, > 4, if m > 9m,, hence we can focus on the cases
and my < m < 3my. As in the previous case, we have that Ny(w) > 0, if m # 16 and

¢ > 3d,4™/*(3my — 2),

where d, is as defined in Lemma 4.1, while here, d, < 2589.6. This is true for my > 238,
if m = my and my > 43, if m = 3my. A quick computation reveals that there exist
155 pairs (3, m) not settled yet. This number is further reduced to 78, if d, is explicitly
computed for each pair. Eventually, from those 78 pairs, only (3,5), (3,7), (3,8),
(3,10), (3,11), (3,16) and (3, 20) fail to satisfy Eq. (4.12), if all appearing quantities
are computed explicitly.

Finally, assume g = 2. If m # 5,9, 21, then Ny(w) > 0, if ¢™/* > 3.2.9 . 47m/12,
as before. This is satisfied for all my > 4, if m > 8my, hence we can focus on the cases
m #5,9,21 and my < m < 4my. As in the previous cases, we have that Ny(w) > 0,
if

¢M® > 3d,4m™/5(5m, — 4),
where d, < 2461.7. This inequality holds for my > 585 if m = my, for my > 100 if
m = 2my and for my > 66 if m = 4m,. Another computation reveals that there are
290 pairs (2, m) not settled yet, but this number is reduced to 148, if d, is replaced by its
exact value. This number is additionally reduced to 17, if we consider Eq. (4.12), with
p < 1/6 and eventually to 6, namely (2,5), (2,7), (2,9), (2,11), (2, 15) and (2,21) if
p is computed explicitly.

We end up with a list of 17 pairs (g, m) of possible exceptions, but we can exclude
(3,11) and (3,20), since we can successfully apply multiplicative sieving on those
pairs with {3851} and {1181} as our set of sieving primes respectively. The other
pairs are listed in Table 4.1 O

We conclude this section with the delicate case m = 2.
Proposition 4.23. Suppose m = 2. If (q, m) is not listed in Table 4.1, then Na(w) > 0.

Proof. Proposition 4.13 implies that N4 (w) > 0,if ¢ > 2W(qp). This s true for g > 97,
for W(qy) < 4.9¢™/*, from Lemma 4.1. From the 34 remaining pairs, only 10 fail to
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Table 4.1: Possible exceptions (g, m) from Section 4.4.
Proposition ‘ Possible exception pairs (g, m) ‘ # ‘
4.15 (8,6), (5,5), (4,6), (3,12), (3,6), (2,12), (2,8), (2,6), (2,4), (4,4), | 23
(8,4), (3,4), (7,4), (11, 4), (19,4), (23,4), (2,3), (3,3), (5,3), (8,3),
(9,3). (11,3), (23,3)
416 (4,3), (5,4), (7,6), (8,7), (9, 8), (11, 10), (13, 12), (16, 15) 8
4.17 (7,3), (9,4), (11,5), (13,3), (13,4), (13,6), (16,3), (17,4), (19,3), | 10
(25,3)
4.19 (5,8),(7,12), (13,38), (5, 16) 4
420 (5,6). (5,12), (7,5). (11, 6) 4
422 (4,5), (4,7), (4,9), (4,15), (3,5), (3,7), (3,8), (3,10), (3,16), (2,5), | 15
(2,7), (2,9), (2:11), (2,15), (2,21)
423 (2,2), (3,2), (4,2), (5,2), (7,2), (11, 2) 6
Total: [ 70 ‘

satisfy the latter inequality, if we compute W(q,) separately for each pair. Among
those pairs, we find (29, 2), which manages to satisfy the resulting inequality, if we
apply multiplicative sieving as well, for {7} as the set of sieving primes. The same
holds for (16, 2) and {17}, for (13, 2) and {7, 3} and for (8, 2) and {7}. The remaining
pairs are listed in Table 4.1. O

Summing up, in this section we proved the following.

Theorem 4.24. Let A = (%)) € GLy(Fy). If g # 2 or A # (3 1), there exist some
primitive x € Fgn, such that both x and (ax+ b)/(cx+ d) produce a normal F ;-basis of
Fgm, unless (g, m) is one of the 70 pairs listed in Table 4.1.

4.5 Completion of the proof

In this section we examine the remaining cases one-by-one and identify the true ex-
ceptions to our problem. In order to perform all the necessary tests, a computer pro-
gram was written in Sage. The code of this program is illustrated in Section A.2. All
pairs (g, m) appearing in Table 4.1 were dealt with fairly quickly. In this section, Ao x
stands for (ax + b)/(cx + d), where A= (%) € GL,(F,) and x € Fyn

Our first and simplest case is ¢ = 2, see Table 4.2. Here, only three matrices had
to be investigated, namely Ay := (1), A; := (}9) and A, := (91). In Table 4.2,
f € F,[X] is an irreducible polynomial of degree m, and f is a root of f; such that
Fym = FF,[f]. From Table 4.2, we see that when ¢ = 2, the only exceptions are m = 3
and m = 4, the exceptions already present in Theorem 1.3.

Next, in Tables 4.3 and 4.4, we present the results, when ¢ is an odd prime. Before
continuing, we note a few things regarding the matrices. First of all, as already noted,
we do not need to check diagonal and anti-diagonal matrices, since those cases have
already been settled by Theorems 1.2 and 1.3 respectively. Moreover, it is clear, that
if A,B € GL,(IF;) and B = @A, for some a € Fy. then A o x = Bo x. Furthermore,
x € Fgn is free if and only if axis free, for all a € IFZ. It follows that, for our purposes,

it suffices to check the matrices A = (%) € GL,(F,), where either d = b = 1 and
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Table 4.2: g = 2.

l m l f € F,[X] irreducible l x € Fym primitive, such that x and A; o x free

2 [ X+X+1 ffori=0,1,2

3 [ X 4+X+1 B+ 1fori=0,2; None for i = 1

4 X+ X+1 Nonefori:O;ﬂ3—|—lfori:1,2

5 [ X+X+1 fFfori=0;f+1fori=1;f+p+1fori=2

6 | X +X+X+X+1 F+i1fori=0; +p+1fori=1,2

7 | X +X+1 B+B+ifori=0;F+fF +1fori=1,5+1
fori=2

8 | X +X+X+X+1 B+ Bfori=0;F +pf+1fori=1,2

9 [ X +X' +1 B4 pH1fori=0;f+1fori=1;F+p+1
fori=2

1| X14+X+1 F+1fori=0;p+1fori=1; f#+ p+1for
i=2

2] X+ X+X+X+X+X+1 | f+1fori=0,1,2

5] XP+X+X+X+1 B41fori=0; p+1fori=1; B4+ +p+1
fori=2

21 [ X+ X+ X+ X +1 B+ +p+1fori=0,F+p+1fori=1;
B+ +p+1fori=2

c,a#0,d=0#aandb=c=1l,a=d=1landb=0#cd=b=1landc=0+#a
and, finally, d = b= 1and ¢ # 0 = g, i.e. (¢q— 1)(g+ 2) matrices.

As before, f € IF4[X] is an irreducible polynomial of degree m, and f is a root of
f, such that Fon = Fq[ﬁ}. Moreover, in the last column, we list elements x € Fyn» that
are primitive and free and inside the following parenthesis the number of matrices
A € GLy(FF,) we investigated and found A o x to be free. An interesting notice in
Table 4.3 is that, not only we have no new exceptions, than those of Theorem 1.3, but
also the pair (3, 4) is not an exception for any of the matrices we investigated, i.e. it
is an exception only when A is anti-diagonal. On the other hand, the pair (5, 4) yields
new exceptions for 4 matrices, the matrices (¢ }), where a # 0. It follows that (5,4)
is an exception for all A = (¢}) € GL,(Fs).

Finally, in Table 4.5, we present the results, when ¢q is composite. All the previous
arguments about the matrices hold here as well. Moreover, h € F,[X] is irreducible
and « is a root of h, such that F; = F,[a]. Also, we respect all previous conven-
tions. We notice that only the pair (4, 3), which also appears in Theorem 1.3, yields
exceptions, for the 3 matrices (¢ 1), where a # 0, hence (4, 3) is an exception for all
A= (490) € GLy(Fy).

We have now completed the proof of the main theorem of this chapter.

Theorem 4.25. Let q be a prime power, m > 2 an integer and A = (‘; Z) € GL, (Fq),
where A # (1) if ¢ = 2 and m is odd. There exists some primitive x € Fgn, such that
both x and (ax + b)/(cx + d) produce a normal basis of Fgn over Fy, unless one of the
following hold:

L. g=2m=3and A= (%})orA=(19),
2. ¢ =3, m= 4 and A is anti-diagonal or
3. (g, m)is(2,4),(4,3) or(5,4) andd = 0.

Remark 4.26. 1t is interesting to notice that, not only we have no new exceptions
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Table 4.3: q € {3,5}.

l q l m l f€ Fy[X] irreducible l x € Fyn primitive, such that x and A o x free
32 | X¥*+2X+2 B+ 2 (4); B(6)
3 | X +2X+1 2 +103), fF4+1(7)
4 [ X' +2X +2 B(7); 28 (3)
5 [ X +2X+1 B+1(6); B+2(3);B+2(1)
6 | X+2X +X+2X+2 | FH1G:F+B+20):+2802)
7 | X +2X+1 FF4+12);28+2@2);p+2(6)
8 [ X +2X +X +2X+ | f+B+1@ B+ +2+103);, 8+ +1(1);
2X+2 B +2B(2)
10 | XO+2X+2X +2X' + | fF+28+1(7), F+2f+1(1); 20 +B+2(2)
X+2
R XP+X+X+X+ | F+2B+206: +F+BOSF+F +B+2(2)
X2
16 | Xo+2X 12X +2X + | f+2(3);2B8+13); fF+2Q); 2 +1(1); 2 + fFF+1
2X +2XP+ X4 2 1); P +28+2(1)
502 | X*4+4X+2 B (22); B+ 4(6)
3 | X +3X+3 B+3(23);28+4(1); B+ 4(4)
4 | X' 4+4XF+4X+2 B4+ B+1(15); FF+38+3(5); f£+ 3B+ 4(1); None
(4); f° 4B (1); 28 + f+1(1); 28 +3B(1)
5 [ X +4X+3 B +1023); F+20)
6 | X+ X +4aX+X+2 | FH101;200+4f+3@); F+26+40);fF+ 8
(6); 28° + 2 (1); 36 +3 (1)
8 | X+ X +3X+4aX+2 | fF+2+20); F+38+205); F +28+1(10);
B44ap+3@2); L +38+41); +4f+4(1)
12 X2+ X +X+4X + | p+4(14;38+2();28+3(7):;48+1(2)
433 +3XF +2X+2
16 | X+ X +4X +4X°+ | 2 +4f+1(1); fF+2B+3(7); FF+2(10); F+45+3
4X° 42X HaXP 4 4aXP+ | (8);3B° 4+ 28+ 4(1); 260 4+4(1)
X+2
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Table 4.4: g is a prime > 7.

l q ‘ m ‘ f € Fg[X] irreducible ‘ x € Fym primitive, such that x and A o x free

7 |2 | X+6X+3 B(46); B+ 1(8)
3 [ X +6X +4 B+ 1(16); B+ 6 (3); B(35)
4 [ X' +5X +4X+3 B+ 1(46); B+3(8)
5 [ X +X+4 f+1(46); 36+ 4(8)
6 | X’+X +5X+4X+ | FF+58@; F+4f00;F +4p+2(12); fF+58+4
6X+3 (6); B+ 38+ 6 (16); 2* + B (1); B + 68 + 6 (1);
B +6B+1(1)
12 X7 +2X +5X + | F+4B+1(15);3F +38+4 (1) 28 + B+ 2 (1)
3 +2X° +4X + | B+ BH6(29); B +H5B+4(5); 28 +38+1(1);
5% +3 B +58+3(2)
12 [ X¥+7X+2 B (118); f+ 7 (12)
3 [ X +2X+9 B+ 7(12); B+ 4 (118)
4 [ X' +8X+10X+2 | B+2(118); B+ 5(10); B+6(2)
5 [ X +10X2+9 B+7(6); B+ 4(78); B+ 5 (35); B+ 10 (1); S+ 9 (10)
6 | X°+3X'+4X+6X+ | f+3(118); B+ 8 (10); 28+ 5 (2)
7X+ 2
10 [ X7 +7X +8X + | B+10(22); B+4(59); B+7(33);28+3(13);28+9
10X + 63 +6X+2 | (2);28+8(1)
133 [ X¥+2x+11 B+5(142); 28+ 6 (15); 2843 (21); 26+ 8 (1); 2+ 9
(1)
4 [ X' +3X+12X+2 | B+2(142); B+ 4(32); B+ 11 (6)
6 | X +10X + 11X + | F+B+903);F+B+33B1):; F+B0A18); F+B+7
11X+ 2 (28)
8 | X +8X  + 12X + | f+1(131); B+3(42); f+5(6); B+ 11(1)
2X2 +3X+ 2
12 | X4 X +5X +8X°+ | B+ 11(37); f+3(59);28+1(13); B+7(37); B+6
X 43X X+ X5+ | (15);3645(1); 28+5(2); B+9(13); 28+9 (2); 38+7
4X+2 (1)
17 [ 4 | X*+7X+10X+3 | B+9(222); B+10(58); B+ 13 (21); 28 +3(1);26+3
()
193 | X¥+4x+17 B+ 3(322); B+5(52); B+ 6 (4)
4 [ X +2X+11X+2 | f+1(322); B+5(50):; f+8(5); B+9(1)
23 |3 | X¥*+2X+18 B+ 9 (526); B+ 3 (24)
4 [ X+3X +19X+5 | B+7(526); B+9(23); B+ 11(1)
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Table 4.5: q is composite.

g [heFX [ m]feF[X

| x€Fgm |

4 [ X+Xx+1]2 [ X¥+X+a af+a+1(18)
3 [ X +aX+(a+)X+a aff+(a+1)+a+1(3); af+ap
8); af* + aB + a + 1 (3); None
@) aft + (a+1)B+1(1)

4 [ X+ X+ (a+1)X+a af’ (15); af’ + a (3)

5 [ X+(@+)X +X+a af+ a (14); (a + 1)B (4)

6 | X+(@+)X+(a+1)X + | aff +aB(A1);af’ + a(7)
X+ X+a+1

7 [ X +aX+X +(a+1)X + | af(13); af+1(5)

X4+ aX+1

9 [ X+(@+ )X +aX +X+ | aff + af (8); af® + af +1(2);
(a+1)X+aX' + X+ (a+ | (a+1)f+aBf+1(1); aff+af+
DX+1 a+1(6);af’+p+a+1(1)

5] X°+aX4+(a+1)X3+ | (a+1)F +aB+ a (@), aff +
X' 24+aX'1+aX 0+ X+ X + | af+1(8); aff*+ (a+1)B+1(1);
X+X+(a+1)X+aX+1 | ff+Brat+1();aff+B+1(2);

B +af+a+1Q1);(a+1)5+
(¢4 1)+ a(1)
8 | X+X+1 (3 [ X+ (@ +a+1)X+(+ | af(61); af+ a(9)
DX+ +a+1

4 [ X+(@@+ D)X+ (@ +a) X+ | aB(62); af+ a+1(8)
(?+a)X+a*+1

6 | X+(+a+)X+(a*+a+ | aB(70)

DX+ X+ (e +a+1)X+1

7 [ X+ (@ +a+ )X+ (a+ [ aff +af+ &+ a(9); af® +
DX+ (@@ + D)X+ X+ | af+ o (8); af® + af + a (22);
(a+ )X+ (a+ D)X+ +1 | af*+aB(27); af* +af+a* +1

@y af+af+a®+a+1(2)
9 [ X4+2x+2 |3 [ X +X+a+1 af (80); af + a (8)

4 [ X+(@+t2)X+2X +(a+ | af+a+1(63); af+a+2(15);

X+ 2a+1 aff+af+a+1(7);(a+1)B+
20+1(1); af* + (a+2)+2 (1)
(a+1)p+1)(1)

8 | X+ (2a + 2)X + 2aX° + | aff+aB+2a+1(47); afff+af+
20X  +2X + Ca+ )X+ | a+2019); aff + 2a+1)p+1
a+2)X+a+2 8); aft +af+2a+2(11); af+

(2a+1)BQ2); af® +2f+2a+1
(1)

16 | X+X+1 |3 [ X+(a+1)X+d° af + a (223); aff + a + 1 (41);
aff + o 4+ a+1(6)

15 | X+ (@ + D)X+ (P +a"+ | aff + & (93); af + a + 1 (21);
a+ 1D)XP 4+ X% +aX" + | af + « (133); aff + & + 1 (17);
(@ +a+ D)X+ (P +a) X+ | ap+’+a+1@);af+a’+a
aXt + (&8 + )X + (8 + | (2)

DX+ (P +a) X+ (P +a+
DX+ X+ (o + )X +
(P +a)X+o’+a
25 | X4+4x+2 | 3 | X+Ba+3)X+2aX+2a+2 | af(575); af+ a (67); af+2a+2

(5); af + 2a+1(1)
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than those appearing in Theorem 1.3, but we have no exceptions at all if all of the
entries of A are non-zero. This is somehow surprising, if we consider the vast number
of different tranformations that the various A’s define. Also, note that the (infinite)
family A = (1), ¢ = 2 and m odd consists solely of genuine exceptions. See the
remark following Proposition 4.6 for a more detailed account of this delicate case.



CHAPTER 5

Extending the (strong) primitive normal basis theorem II

In this chapter, we consider Problem 1.5. Our approach is similar to the one of the
previous chapter, but since now we have four conditions (instead of three), more effort
is required in order to achieve sufficient conditions for Problem 1.5 to be answered
positively, and even then end up with stronger conditions, harder to satisfy. As a
result, we prove that this question can be answered positively, when ¢ > 23 and
m > 17, and leave the remaining cases unresolved. Nonetheless, we try to prove all
results in their full generality.

5.1 Some estimates

The purpose of this section is to prove Proposition 5.1, which provides us with a con-
dition for the existence of elements with the desired properties. Towards that, we
express the number of elements with the desired properties with the help of the func-
tions presented earlier, leading us to character sums. After that, utilizing the results of
the previous section, we prove Proposition 5.1. Also, note that due to the complexity
of the character sums it is necessary to distinguish four cases depending on the form
of A, A is neither upper triangular nor anti-diagonal, A is upper triangular, but not
diagonal, A is anti-diagonal and A is diagonal, resulting four subsections.

Let A= (%) € GLy(F,). qi | qo and F; | Fy, for i = 1,2, where g, and F, stand
for the radicals of ¢™ — 1 and X™ — 1 respectively; in particular F, = X™ — 1. We
denote by k the quadruple (qi, g2, Fi, F») and call it a divisor quadruple. Furthermore,
we call an element x € Fyn ky-free over F, if x is q;-free and F;-free over F, and
(ax+b)/(cx+ d) is go-free and Fy-free over F,. Also we denote by N4 (k) the number
of x € Fyn that are ky-free over F,. We write 1 | k, if 1 = (di, d,, Gi, G;) and d; | g;
and G; | F; for i = 1, 2. Further, w stands for (qo, qo, Fo, Fy) and 1 stands for (1,1, 1, 1),
while the greatest common divisor and the least common multiple of a set of divisor
quadruples are defined point-wise. A divisor quadruple p is called prime if it has
exactly one entry that is # 1 and this entry is either a prime number or an irreducible
polynomial. Finally, if two or more divisor quadruples are co-prime, i.e. their greatest
common divisor is 1, then their product can be defined naturally.

45
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Example. If ¢ = 5 and m = 4, then gy = 78 (since ¢" — 1 = 624 = 2*.3 .13
and2-3-13 =78)and F, = X* — 1 = (X —1)(X—2)(X—3)(X—4) € Fs[X],
since m = my = 4. In that case, four distinct divisor quadruples would be e, :=
(2,6, X —1,1),p; == (1,1,1,X— 1), pz := (3,1,1,1) and p5 := (1,1,1, X+ 1). It
is clear that ey, p;, p; and ps are non-trivial, co-prime divisor quadruples, while e is
non-prime and p;, p; and ps are primes. Also, since they are co-prime, we can define
e:=¢€)-p; P P3= (66X —1,X —1).

It is clear that for our purposes it suffices to show that Ny(w) > 0. In the next
subsections we are going to express Ny (k) in terms of character sums and export
some useful expressions. From the fact that w and {2 are characteristic functions we
have that:

Na(k) = Z 04, (%) 25, ()0, (“” b) 2, (""+ b) , (5.1)

ex+d cx+d

where the sum runs over Fyn, except —d/cif ¢ # 0.

Letk = (qi, g2, Fi, F») be a divisor quadruple, from now on we will denote by flk)
the product f{q,)fq2) A F1)f{F,), where fmay be 6, ¢, 1 or W*. The purpose of the rest
of this section is to prove the following.

Proposition 5.1. Let A = (%) € GL,(F,) and k be a divisor quadruple. If ¢™/* >
4W(k), then Ny (k) is positive, provided that q # 2 and if A has exactly two non-zero
entries and y is their quotient, then t(y) = 1, where 7 is the quadratic character.

Remark 5.2. In the following subsections we will prove the above proposition for all
possible forms of A. Also, it will become clear why the restriction q # 2 as well as
the restriction regarding the entries are indeed necessary.

5.1.1 Matrices that are neither upper triangular nor anti-diagonal

In this subsection we assume that A = (‘; Z) € GL,(IFy), where ¢ # 0 and at most
one of the other entries is zero. A more convenient expression of Ny(k) is desirable,
i.e. Eq. (5.1) can be rewritten as:

NA(k) = Q(k) Z ‘:EB Z XA(Xp Xos V1 ¢2)7 (5.2)

l‘k )(ivw,'

where

ax+ b ax+ b
Xa(xis Xos V1o V) 1= #z;/CXI(X))Q (CX+ d) Vi)Y (cx+ d) .

Proposition 5.3. Let y,, x, be multiplicative characters and y/,, , be additive charac-
ters such that (x1, Xo, V1, ¥2) # (Xo> Xor Yor Vo)- then

|XA<X13X2a l//p ¢2)| < 4qm/z'

Proof. There exist some n; € {0,1,...,¢™ — 2} such that y,(x) = x,(x™) and some
¥i € Fgn such that ,(x) = ,(yix), for i = 1, 2. It follows that

XaOt X Vi) = D xg(F(2)¥,(G(x)), (5.3)
x#—d/c

IFor the explicit definitions of these functions see the previous chapter.



5.1 SOME ESTIMATES 47

where F(X) := (X" (aX+ b)™)/(cX+ d)™ € F¢(X) and G(X) := (X(cX+ d) +
v2(aX + b))/(cX+ d) € Fy(X). We prove the desired result for all possible forms of
FandG.

From Eq. (5.3), Theorem 2.13 implies that if F # yH? ~, for any y € Fy» and
H eFgn(X),and G # HP —H + y, forany y € Fgn and H € Fyn (X), then

|XA(X17XZ7 ‘pla ¢z)| < 4qm/2.

Assume F = yH7 ~! for some y € Fgn and H € Fn(X). Inthat case n, = n, = 0.
To see this, write X = H;/H,, where H,, H, are co-prime polynomials over Fm. It
follows that
X" (aX+ b)"H ' = y(cX+ d)"HI

Since H; and H, are co-prime, the above equation implies Hg’tl | (X + d)™, that
is H; is constant, since n, < g™ — 1. By considering degrees, we conclude that H;
is also constant and that n; = 0. It follows that (aX 4+ b)™ = y/(cX + d)™, where

y = yH! T e [Fgn, impossible for A € GL(F,), unless n, = 0. Additionally,
if y; = 0 and yz # 0, then, from Eq. (5.3), we have that

_ yalax+ b) yea . yalbe— da)
|XA(X17X23¢D¢2)|* Z ¢( ex+d ) Z¢< Cy>

x£—d/c

= |¥(na/0) Y Y| =|-1+ Y ¥(3)| =

y#0 yEFm

according to Lemma 2.2. Similarly, if y; # 0 and y, = 0, then

|Xa(x e Xz0 ¥ ¥)| = Z I//g(ylx) = (=»nd/c) Z 21¢5
x#—d/c x€Fgm

= [ = ¥y (=nd/c)| = 1.
Finally, if y;, y» # 0, then Eq. (5.3) yields

XaCte Xos Vs ¥l = | D Yp((nx(ex + d) + ya(ax + b))/ (ex+ d))
x#—dfc

= Y lym/c+ vy y(—da+ be)/c+ (yoa— y1d)/c)
y#0

= ‘ﬁg(zo)z Y (ny+zy )| = Z Y (ny+zy )|,

y7#0 y7#0

where zy := (y,a—y1d) /¢, z1 := y1/cand z; := y,(—da+ bc)/c. It follows that, since
both z; and z, are non-zero, the last sum is bounded by 2q'"/2, from Lemma 2.11.

Assume G = HP — H + yfor some y € Fyn and H € Fyn(X). Write H = H;/H,,
where Hi, H, are co-prime polynomials over Fon. If G # 0, then

—1

yiX(cX+d) + y(aX+b)  H —H + yH;

— P _
G=H'—-H+y= X+ d

E|S
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It follows immediately from the restrictions on A that ¢X+ d is co-prime to y; X(cX +
d) + y,(aX + b) and it is clear that H) is co-prime to HY — HiH. ' + yHE, hence
¢X + d = Hb, a contradiction since ¢ # 0. It follows that G = 0, that is y; = y, =
0. Additionally, if at least one of ny, n, is non-zero it follows that the polynomial
X™(aX + b)™(cX + d)9"~'~™ has at most three distinct roots and is not of the form
yH?" = for y € Fyn, H € Fyn[X]. Now, from Eq. (5.3), we have

XA(leXZa [//17 ¢2) = Z )(g(xﬂl(ax+ b)"z(cx—|— d)_nz)
x£—d/c
= Z )(g(x"l(ax-i- b)"z(cx—i— d)qulfnz),

x€EFm

but the last sum is bounded by 2q’”/2, from Theorem 2.10. O

Proposition 5.3 and Eq. (5.2) imply

Na(k) > 0(k) | q" —1—4¢"* > 0] oo

1
1|k, 1£1 ol XvXp ViV

~—

The above, combined with Eq. (2.4), is rewritten as

m m 1
Na(k) > 6(k)g™* | g™ = —7 =4 D ()
q 11k, 11

= Na(k) > 0(0)q™(q"* — g~ "/* — a(2a ettt 1)),

Summing up, we have proved the following, which clearly implies Proposition 5.1,
provided A is of the described form.

Proposition 5.4. Let A= (%) € GL,(F,), where c # 0 and at most one of the other
entries is zero. Letk be a divisor quadruple. If ¢"/? > 4W(k) — 7, then Na(k) is positive.

5.1.2 Upper triangular matrices that are not diagonal

In this section we focus on matrices of the form A = (g Z) € GL,(Fy), with b # 0.
As in Subsection 5.1.1, we have

(1)

Nu(k) = 6(k) Z W Z [//z(b/d)yA(Xquv 2% ¥2), (5.4)
11k ¢ XV
where
Valtiro ) = 3 o () (o
xEF m
B [ax+b " ' (x
pop ( (%57) ) o

where /,(x) := y,(ax/d) for x € Fgn, an additive character with the same Order
as ¥, and ¥, ¥, is the product of ¥, and ¥, i.e. another additive character. If all
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X1s Xo» (¥, ¥}) are non-trivial, then |Va(xy, Xy ¥y, ¥,)| < 2¢™?, from Theorem 2.13.
If exactly two of y,, x,, (¥, ¥,) are non-trivial, then Theorems 2.10 and 2.13 imply
1VaCxtys Xos Vi W) < q™2. If exactly one of y,, x,, ¥, ¥, is non-trivial, Lemma 2.2
implies Ya(x,, x5, ¥, ¥,) = 0. Now, as in section 5.1.1, we get

m #(G)? b m/2
0" X NG T w(g)|satno-a e

Glged(F,F) Ord(y,)=G

Eq. (5.5) suggests that a lower bound for the coefficient of ¢™ is desirable. Set
F = ged(F,B)/(X—1),if X— 1| ged(F, F,) and B := ged(F, F,) otherwise.
Further, set y := b/d # 0. It follows immediately from Lemma 4.3 that y(y) = 1 for
any additive character  whose Order divides F;. First, suppose X — 1 | ged(F, ).
With the help of Lemmata 2.2, 4.4 and 4.5, we evaluate:

> ST

G‘ng(Fl,FZ) ¢ (G Ord(y)=G
S e X WS mmeyg, L )
GlFs Ord(¥)=G ar ¢ Ord(y)=(X-1)G

1
_Z Z(P 2(X—1)G) Z ¥ (y) Z (280

G\F G|Fs ord(y,)=G Ord(y,)=X—1
(1 1 q(q—2) 1 q(qg —2)
-1~ o) 230 " a1 290~ (a1

Similarly, if X — 1 { ged(F,, F;), then

G 1
2 <o<c 2 =2 oGt

Glged(F,F) Ord(y)= G|F;

Summing up, Egs. (5.4) and (5.5) give

m/2 m Zq( )
Na(k) > 0(k)q™ (q/ (17 —|—4—2W(k))

which implies the following.

Proposition 5.5. Let A = (g Z) € GLy(F,), where b # 0 andk be a divisor quadruple.
If

4 q(q—2)

(q— 1) > 2W(k) —

then N4 (k) is positive.

Remark 5.6. If g = 2, then the left part of the latter is zero and the inequality holds only
for k = 1. This is not a surprise, since one easily checks that in this case A = (} 1)
and, therefore, Problem 1.5 holds if there exists some x € Fy» such that xand x + 1
are both free over F,, impossible from the definition of free elements for m odd. On
the other hand, Proposition 5.1 is clearly implied, provided that A is of the described

form.
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5.1.3 Anti-diagonal matrices

In this subsection we assume that A = (9}) € GLy(F,), y := b/cand z(y) = 1,
where 7 is the quadratic character. The following lemma will prove to be useful.

Lemma 5.7. Let a, § be integers such that §/a is an odd integer and [ is square-free.

Then
B p—2 1

> —.
o(h) qe Pm1 2
pprl{lme

Proof. Write f/a = p; - - - pr, where p; are primes such that p; < p;, for i < j. Clearly,
our statement is true for k € {0, 1}. Suppose k > 2, then it follows that

B p—2 p—-2 B {Lepi—2

B:=—/— = ) :

o(p) 1171 p—1 p—1 ¢(ﬁ)gpi71
ppri{;ne

Since the function f{x) = (x — 2)/(x — 1) is increasing for x > 1, we deduce

_p-2 P 'ﬁpi—lzpl—? B olf/me) _P1=2 ap
T p—1 (B) pi p—1 oB) Bl  p—1 @(ap)

i=1

The result follows, since p; > 3. O O

As in Subsection 5.1.1, we conclude

Na(k) = 6() S 58; S 1N 24l Xor Vs ¥2), (56)
Xi‘rl//i

1k

where
Zaltn o V1 ¥2) = Y (X)) (0¥ (0¥ (rx ),
X#0
If at least two of ¥,, ¢, and (y,¥,) (where (x,,) is the product of y, and },, an-
other multiplicative character), are non-trivial, then |Z4(x,, x5, ¥, ¥,)| is bounded
by 2¢™/2, from Lemma 2.11. If exactly one of ¥, ¥, and (x,¥,) is non-trivial, from
Lemma 2.2, then | Z4(x,, x5, V1, ¥,)| = 0. We eventually get

Na(k)
)

oy Y A S )| <2novig 0. 6)

2
d|ged(q1,92) v*(d) ord(y,)=d

Eq. (5.7) implies that a lower bound for the coefficient of g™ is desirable. Set g3 :=
ged(qi, q2). Furthermore, we observe that the function

2(d
ﬂx)%qug 7w

ord(y)=d

is multiplicative. Consequently, if we write g3 = p{" - - - p;’, where the p;’s are distinct
primes, then the coefficient of g™ in Eq. (5.7) can be rewritten as

! 2
X5 X =11 [ty X

i=1 g|ph ord(y)=d plgs ord(x)=p
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It is clear that if a prime p divides gs, then }° 1, _, x(y) is p — 1, if y(y) = 1 for
all multiplicative characters y of order p, and —1 if there exists some multiplicatice
character y of order p such that y(y) # 1. Furthermore, set

qs = H p

p prime,p|qs
x(y)=tiford(y)=p

With the help of these observations, the coefficient of g™ in Eq. (5.7) can be rewritten
as

1

() I (60

p prime,p|q p prime, p|gs,plqs
-0 5 T =i I
B -1 -1 olg -1’
plgs,p prime P pprime,p|qs,pfqs P o(d) P

e
3 .
2l G4 HP prime

where gj is the radical of g5. Here we note that ¢} / g4 is always odd. This is immediate
if ¢ is odd, i.e. gis even. If gj is even, i.e. qis odd, then g4 is also even since y(y) = 1,
when y has order 2,ie. y = 1.

It follows immediately from Lemma 5.7 that the last expression of the coefficient
of g™ in Eq. (5.7) is larger than 1/2. Now, Egs. (5.6) and (5.7) give:

m/2

m q 1
Na(k) > 0(k)q /2 (2 - W

+8-— 2W(k)> ,

which implies the following.

Proposition 5.8. Let A= (°!) € GL,(F,), where t(b/c) = 1, where 7 is the quadratic
character, and k be a divisor quadruple. If g™/* > 4W(k) — 15, then Ny (k) is positive.

Remark 5.9. The restriction for 7(b/c) = 1 may look unnecessary, but is not. For
instance, if x € Fyn is primitive and y € Fgn is not a square, i.e. 7(y) = —1, then one
easily checks that (yx)(?"~1/2 = 1,1ie. yx is not primitive. Additionally, it is clear
that Proposition 5.8 implies Proposition 5.1, provided that A is of the described form.

5.1.4 Diagonal matrices

In this subsection we prove Proposition 5.1, when A is diagonal. Suppose A = (9) €

GL;(Fy), y := a/dand 7(y) = 1, where 7is the quadratic character; Eq. (5.1) becomes:

NA(k) = Z Wq, (X) ‘QFl (.X') Wg, ( )/X) QFz (yx> .

x€Fym

It is clear from the definition of an F,-free element, that since y € Fg. xis F,-free if
and only if yx is F,-free, i.e. {25, (yx) = Q2 (x). Furthermore, 25, (x)2F, (x) is 1, if x
is simultaneously F;-free and F,-free, and 0 otherwise, but x is simultaneously F;-free
and F,-free if and only if it is F;-free, where F; := lcm(F, F,), hence 2F, (x) {2, (x) =
0, (x). It follows that

Na(k) = ) @ (x)oq, (v2) 25, ().

xEF m
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Now, as in Subsection 5.1.1, we get

u DH(d)p(G)
Na(k) = 6(q1)0(q2)0(F5) Z IPGZXZ W(xys Xo0 )

di,d>,G Qﬂ XV

where

W X ¥) = Y () () ¥(x).

x€EFm

Lemma 2.2 implies that W(y,, x,, ¥) = 0, provided that exactly one of (y,y,) or  is
non-trivial, where (y, x,) is the product of y, and y,, a multiplicative character. If both
X1X, and 1 are non-trivial, then Theorem 2.13 implies that [W(y,, x,, ¥)| < ¢™2
Now, as in previous subsections, we get

NA—(k)_ m ,UZ(d)
G(ql)e( )9(F3) ! dgcgq:n(h) ’ d ord(zxz:)—dXZ(Y)

< qm/z(w(%)w(%)W(Fa) -3).

The coefficient of g™ in the above equation was proved to be larger than 1/2 in Sub-
section 5.1.3, hence we get

qm/Z

Nu(k) > 0(q1)0(qz) 0(Fs)q™? ( +6— W(QI)W(‘]Z)W(F3)> 7

which clearly implies the following.

Proposition 5.10. Let A = (49%) € GL,(F,), where t(a/d) = 1, where t is the qua-
dratic character, and k be a divisor quadruple. If ¢"/* > 2W(k) — 12, then Na(k) is
positive.

Remark 5.11. Clearly, the bound of the above proposition is far from optimal, since
the much weaker condition ¢™/? > 2W(q,) W(q,) W(F;) — 12 could be used instead.
Despite being non-optimal, Proposition 5.10 fits our purposes and is consistent with
the rest of this paper. Nonetheless, it is clear that if we restricted ourselves to diagonal
matrices, then we could get significantly better results. Moreover, one easily checks
that the comments of Remark 5.9 apply in this case as well.

5.2 The sieve

Following Cohen and Huczynska [12, 13], like we did in Section 4.2, we introduce a
sieve that will help us relax the condition proved in the previous section. The proposi-
tions included in this section are those of Cohen and Huczynska [13], adjusted prop-
erly. Moreover, from now on we assume that if A has exactly two non-zero entries
and y is their quotient, then 7(y) = 1, where 7 stands for the quadratic character.
In particular, A may have two, three or four non-zero entries with the above further
condition in the case it has exactly two non-zero entries.

Let k = (qi, g2, F1, F>) be a divisor quadruple. A set of complementary divisor
quadruples of k, with common divisor k, is a set {ki,...,k,}, where the k;’s are
divisor quadruples such that k; | k for every i, their least common multiplier is divided
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by the radical of k and (k;, k;) = ko for every i # j. Furthermore, ifk;, . .., k,are such
that k; = kop;, where py, ..., p, are distinct prime divisor quadruples, co-prime to
ko, then this particular set of complementary divisors is called a (kq, r)-decomposition
of k. For a (ko, r)-decomposition of k we define § := 1 — Y_|_, 1/|p;|, where
stands for the absolute value of the unique entry # 1 of p;, if this entry is a number,
and g8 if this entry is F € F,[X]. Finally, we define A := (r—1)/5 + 2. The
following is a supplement to the example of page 46 and helps us understand the new
concepts defined here.

Example. Make all the assumptions of the example in page 46. Further, set e; :=
(2,6, X —1,X—1), e, := (6,6,X* —1,1) and e3 := (2,6, X* — 1,X+ 1). Clearly,
{e17 e, e3} is a set of complementary divisors of e with common divisor €. In partic-
ular, observe that p;, p, and p; are all co-prime to €, and eyp; = e; for i € {1, 2,3},
hence {e;,e;,es} is also a (e, 3)-decomposition of e. For this decomposition, we

compute §=1—3 — 1 —1 =% and A = 19/2

Proposition 5.12 (Sieving inequality). Let A € GL,(IF,), k be a divisor quadruple and
{ki1, ...,k } be a set of complementary divisors of k with common divisor ko. Then

) > ZNA (r—1)Na (k).

Proof. The proof is identical to the proof of Proposition 4.9, where the word ‘triple’ is
replaced by the word ‘quadruple’. O

Proposition 5.13. Let k be a divisor quadruple with a (kq, r)-decomposition, such that
8> 0andky = (q1, qi, Fi, Fy) for some q, | qo and F, | Fy. If A € GLy(Fy), ¢ > 2 and
q"* > aW(kg) A, then Nu(k) > 0.

Proof. Let py,...,p, be the primes of the (ko, r)-decomposition. Proposition 5.12
implies

Na(k) > SNa(ko) + Xr: <NA(k0Pi) - (1 p l|) NA(kO)) : (5.8)

i=1

Suppose A is of the form described in Subsection 5.1.1. In that case, taking into
account the analysis done in subsection 5.1.1, Eq. (5.8) implies

Na(k) > 80(ko) | ¢ — 1+ > _U1) | +6 ko)zr: (1 —~ 1) > U,

1|k, =1 |pl‘ 1|kop;
141 1k,

where the absolute values of the expressions U(1) and Uj(1) does not exceed 4¢™/2.

Since 8§ > 0 it follows that Ny (k) > 0 if

5q™% > 45W(k,) +4Z (kop;) — W(ky)) (1 - 1).

=1 |pl‘

The result follows, since W(kop;) — W(ko) = W(ko) and Y _|_, ( o I) —1+34.
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Suppose A falls in the categories examined in subsections 5.1.2 and 5.1.3. With the
help of the analysis of those subsections and Eq. (5.8), we conclude that

Na(k) > 60(ko) | kg™ + Aa+ 3 U0 | + 0(ko) Z (1 ! ) S u),

1k, —1 Ipil 1kop:
1#1 1k,

where k > 1/2, 14 is —1if A is anti-diagonal and 0 otherwise and the absolute values
of the expressions U(1) and Uj(1) does not exceed 2¢™/2. The result follows as above.

Finally, suppose A is diagonal. We recall the facts proven in subsection 5.1.4.
Eq. (5.8) gives

Na(k) >66%(q1)0(Fy) | kg™ + Z Uldy, d;, G)

dilq1, &|q1, GIR
not all =1

/

()RS <1 - 1) S U(dd,0),

- Pi
=1 | l| di1qi,1,d2| i,z and G|F;
ditq1,dstq; or GtF

where py, ..., pr are exactly those prime divisor quadruples, appearing in the (ko, r)-
decomposition of k, whose fourth entry is 1, (gi 1, gi 2, Fi1, Fi2) = kops, the absolute
values of the expressions U(d,, dy, G) and Uj(d;, d;, G) does not exceed ¢™/? and x >
1/2. The result follows as above. O

Recall the arguments prior to Proposition 4.11 regarding the factorization of Fy. As
then, from now on, s will stand for the minimal natural number, such that my | ¢° — 1
and G, will stand for the product of the irreducible factors of F, of degree s.

Proposition 5.14. Let {, ...} be a set of distinct primes (this set may be (), in which
case t = 0) dividing qo and ry := deg(F,/Gp). If

qm/2 N 41—tW2(q0) WZ(FO/GO) ( qs(z(mo - rO) + S(Zt— 1)) ) + 2) ’

qu (1 —2 E;:l l/l,) — 2(m0 — 1
then Na(w) > 0, provided that the denominator of the inequality is positive.

Proof. Let Gy = [[;_, Gibe the factorization of G, into monic irreducible polynomials.
Consider a (ko, 2(r; + t))-decomposition of w, where

k. — 90 9o F K
0 — T ) T Y T~ )~ .
Hi:l li Hi:l i Go Go

Clearly, the prime divisor quadruples of this decomposition are exactly those who
have exactly one # 1 entry and this entry is either [;, for some i = 1,...t or G;, for
some i = 1,..., r;. Proposition 5.13 implies that Ny(w) > 0, if

2(n+1)—1
™2 > 47 WA (qo) WA(Fy /G 1 i
q WG\ s e, e )
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that is

q'(2sr + s(2t — 1))
i +2].
sg (1 =23, 1/L) — 2sn

The desired result follows immediately, since sr; = my — 1. O

g > 47 WA (qo) WA (Fy / Go) (

5.3 Evaluations

From Proposition 5.14 it is clear that some knowledge regarding the factorization of
Fy can be used in order to effectively use the results of the previous section. In this
section we, at least to some point, describe the factorization of Fy and then prove our
result. For the proof of Proposition 5.15 sieving is unnecessary, but is essential for all
the rest.

Proposition 5.15. Let q and m be such that my < 4. If ¢ > 23 and m > 17, then
NA(W) > 0.

Proof. From Proposition 5.1 and Lemma 4.1, since W(F,) < 24 it suffices to show that

"t > 8 d (5.9)

where d;, < 4514.7. This inequality is satisfied for ¢ > 23 and m > 31 and for
q > 268 and m > 17. In the remaining region there are exactly 20 pairs (q, m)
satisfying my < 4. Those pairs are

(23,23), (25, 20), (25,25), (27,18), (27, 27), (29, 29), (32, 24), (49, 21), (49, 28),
(64, 24), (81,18), (81,27), (121, 22), (125, 20), (125, 25), (128, 24), (169, 26), (243, 18),
(243,27) and (256, 24)

A quick calculation reveals that all of them satisfy ¢"/> > 4W(k) and the result
follows from Proposition 5.1. O

In the two following propositions we deal with the case when F; splits into linear
factors, which occurs when my | ¢ — 1.

Proposition 5.16. Let g and m be such that my = q — 1. If ¢ > 23, then Na(w) > 0.

Proof. We have that w = (qo, qo, Fo, Fy), where Fj = X! — 1 = [] 5. (X — x).
q
Therefore, it is clear that, for 0 < r < 2(g— 1), we can choose a (kg, r)-decomposition
of w, where kg = (qo, qo, G, G), where some G | F, with 1 < deg(G) < g — 1. In that
case all the 2(qg — 1 — deg(G)) primes of the decomposition have absolute value q.
For g odd choose G, such that deg(G) = (¢ — 1)/2. In that case § = 1/q, A =
(¢ —1)? 4 1and W(G) = 204D/ 1t follows from Proposition 5.13 that Ny(w) > 0,
if
g™ > 27 ((g— 1)° + 1) W (qo)- (5.10)

For q even choose G such that deg(G) = q/2. In that case § = 2/qg, A = @ +2,

W(G) = 29/% and Proposition 5.13 yields that if Eq. (5.10) holds, then Ny(w) > 0,
hence if Eq. (5.10) holds, then Ny(w) > 0 in any case. With the help of Lemma 4.1,
Eq. (5.10) may be replaced with

gt > 27 ((g— 1)" + 1)d. (5.11)
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Eq. (5.11) is easily verified for ¢ > 72, since m > q—1and d,, < 4514.7. Similarly,
if m # q—1, thenfor m > 2(g—1) Eq. (5.11) is verified for ¢ > 27 and for m > 3(g—1)
it holds for all g > 23.

The remaining cases are those when m = g—1and 23 < q < 71. For those values,
we verify that Eq. (5.11) holds for all g in question unless q is 23, 25, 27, 29, 31, 32, 37,
41 or 43, where we compute d,, explicitly for each g. For those values of g, we verify
directly that Eq. (5.10) holds with the sole exception of g = 25.

For g = 25, we compute

G =2-3-13-17-31-313-601-11489 - 390001 - 152587500001

and set ¢ = 2-3-13 17 - 31. We choose a (ko, 34)- decomposition of w, where

ko = (q1, ql, G,G), where Gis defined as before. It follows that § = 5 — (e —
3902001 5 439 % ﬁ and A =33/5+ 2. It can be computatlonally confirmed that
the conditions of Proposition 5.13 are satisfied, i.e. Ny(w) > 0. O

Proposition 5.17. Let m and q be such that my | ¢ — 1 and my # q— 1. If ¢ > 23 and
m > 17, then Na(w) > 0.

Proof. We use Proposition 5.14, with () as the mentioned set of primes. It is clear that,
in that case Gy = F; and s = 1. It is also clear that the denominator of the inequality
of Proposition 5.14 is positive, since my < (q — 1)/2. It follows that N4(w) > 0 if

q"? > 4WA(qp) (q(zm‘)_l) + 2) . (5.12)

q—2m0

Assume my = (g — 1)/2. With the help of Lemma 4.1, Eq. (5.12) can be replaced
by ¢"/* > 4d; ((q — 1)* + 1), where d, < 4514.7. This inequality is satisfied for
q > 23 and m > 32. Further, m > my = (q — 1)/2, i.e. another sufficient condition
is ¢(9=1/% > 4d? ((q— 1)* + 1). This is satisfied for g > 54. For the remaining pairs
(g, m), qis an odd prime power 23 < g < 54and 17 < m < 32. A computation shows
that in the remaining region only six pairs, namely (37, 18), (41, 20), (43, 21), (47, 23),
(49, 24) and (53, 26), satisfy my = (¢— 1) /2. For all six pairs Eq. (5.12) can be verified
directly.

Next, assume my = (q — 1)/3. As above, it turns out that Ny(w) > 0, if ¢"/* >

déo zf;jgﬂ’ where d,, < 4514.7. This condition is satisfied for ¢ > 23 and m > 28.

Furthermore, since m > my = (q — 1)/3 another sufficient condition is {4~ 1/12 >
ad, 2 _3q+4 , which holds for ¢ > 67. A quick computation shows that, in the remain-
ing reglon, only two pairs, namely (61, 20) and (64, 21), satisfy my = (¢ — 1)/3, but
both of them satisfy Eq. (5.12) can be verified directly with all quantities computed
explicitly.

Finally, assume my < (q—1)/4. If t;, < 17, it follows that W?(qo) < (2'7)?, hence
Eq. (5.12) implies that Na(w) > 0, if g™/ > 418 %, which holds for ¢ > 23 and
m > 17, except when m = 17 and 23 < ¢ < 28, but in those cases my { ¢ — 1. For
te, > 17 we use Proposition 5.14 with {I;, l,, ;} as our set of primes, where [; > 53,
I, > 59 and 5 > 61, primes dividing go. As before, Proposition 5.14 and Lemma 4.1
imply that N4 (w) is positive, granted that

2 m/4>dzq (4a+7)g+2
© (2a—1)g+1

, (5.13)
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where & :==1—-2/l;—2/l,—2/l;. Since @ > 1—2/53—2/59—2/61and d;, < 4514.7,
Eq. (5.13) holds for ¢ > 23 and m > 22 and for ¢ > 78 and m > 17. For the remaining
pairs , i.e. 17 < m < 21 and prime powers 29 < g < 78 we have that Eq. (5.13) is
satisfied, if d, is replaced by its exact value. O

In the rest of this section we focus on the remaining cases, i.e. when my > 4 and
s # 1. As we did in Section 4.4, we define p := t5 /G, /mo, where tg, /G, stands for the
number of monic irreducible factors of Fy/G,. The following four propositions deal
with the various values of p, as described in Lemma 4.18. Also, the demand my > 4 is
not a restriction at all, since in Proposition 5.15 the cases where my < 4 have already
been settled. Furthermore, Proposition 5.14 implies that Ny(w) > 0, if

2¢°(1 — p)my — s¢*
m/2 <, gpmot+1yy2 q 2 5.14
q > (QO) ( sqS—Z(l—p)mo + ) ( )

since tf, /6, < ro and pmg = tg, /g, for my < sq*/(2 — 2p).
Proposition 5.18. If g > 27, m > 17, my > 4 and p = 1/2, then Ny(w) > 0.

Proof. Under the given restrictions, Lemma 4.18 implies s = 2, gis evenand m = 0
(mod 4), i.e. it suffices to only examine m > 20. Furthermore, my < 2(q — 1) < 2¢%,
that is we can use Eq. (5.14) as a sufficient condition for Ny(w) > 0. It follows from

Lemma 4.1 that if ,
4 m —2
(ﬁ> > 4d. (q l9=2) + 2) )
2 o q2 _ q+ 1

then Ny(w) > 0, since the substitution of my with 2(q — 1) ensures that the denom-
inator of the above fraction remains positive. This inequality holds for d,, < 4514.7,
g > 23 and m > 236. For m < 236 the denominator of the fraction of Eq. (5.14) re-
mains positive for g > 23, even if we substitute my with m. It follows that a sufficient

condition is
4 m 2 )
VIV g (22 )
2 D\ 2¢°—m

This inequality holds for dg, < 4514.7, ¢ > 988 and 20 < m < 236.

There are 310 pairs (g, m), where 23 < g < 988 is an odd prime power, 20 < m <
236, and my = 2gcd(m, g — 1). All those pairs satisfy Eq. (5.14), if we replace W(q)
by dy, q"™* and compute d,, explicitly for each pair. The result follows.

O

Proposition 5.19. If g > 27, m > 17, my > 4 and p = 3/8, then Na(w) > 0.

Proof. Since p = 3/8, Lemma 4.18 implies ¢ = 1 (mod 4), 16 | mand s = 4, ie.
it is safe to show the desired result for ¢ > 25 and m > 32. Furthermore, m; <
4(q—1) < sq°/2(1 — p), which means we can use Eq. (5.14) as a sufficient condition
for Na(w) > 0. It follows from Lemma 4.1 that if

(q/8)™* > ad, (4 - 55(2:91)/(]4 + 2) ,

then Ny (w) > 0, since the substitution of my with 4(q — 1) ensures that the denom-
inator of the above fraction remains positive. This inequality holds for d,, < 4514.7,
q>25and m > 77.
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For m < 77 the denominator appearing in Eq. (5.14) remains positive, even if we
substitute my with m. It follows that Ny(w) > 0 if

(q/8)™* > ad’, <(5m_16) + 2) .

16¢* — 5m
This condition is satisfied for g > 106,32 < m < 77 and dg, < 4514.7. We end up with
8 pairs (g, m), namely (25,32), (41,32), (73,32), (89,32), (37,48), (61,48), (49, 64)
and (81,64), 25 < q < 106,32 < m < 77 and my = 4 gcd(m, ¢ — 1). For those pairs,
we compute dy, explicitly and check that the above condition is satisfied. O

Proposition 5.20. Ifq > 23, m > 17, my > 4 and p = 13/36, then No(w) > 0.

Proof. Since p = 13/36, Lemma 4.18 implies ¢ = 1 (mod 6), 36 | mand s = 6,
that is we can only show the desired result for ¢ > 25 and m > 36. Furthermore,
my < 6(q — 1) < sq°/2(1 — p), which means we can use Eq. (5.14) as a sufficient
condition for Na(w) > 0. It follows, from Lemma 4.1. that if

46q — 82

/9ym/4
(q/aBm)"" > ad, (36 “a6(a- /¢ 2) ’

then Ny (w) > 0, since the substitution of my with 6(q — 1) ensures that the denom-
inator of the above fraction remains positive. This inequality holds for d, < 4514.7,
q > 25 and m > 72, therefore from now on we can focus on the case m = 36. It
follows that Ny(w) > 0 if

13/9\m/4 2 (¢°(23m — 108) )
(q/aB/)m* > ad, <1osq6—23m +2]).
This condition is satisfied for ¢ > 72, m = 36 and d;, < 4514.7. For the remaining
pairs, i.e. 25 < g < 72, a prime power with ¢ = 1 (mod 6), and m = 36, we
check than only 3 pairs (g, m), namely (31,36), (43,36) and (67,36) satisfy my =
6 gcd(m, ¢ — 1), but all three of them satisfy the latter inequality if we replace dg, by
its exact value. O

Proposition 5.21. Suppose ¢ > 23, m > 17, my > 4, my {1 q— 1 and p < 1/3. Then
NA(W) > 0.
Proof. We begin with ¢ > 27. From the definition of p, it is clear that W(F) <
204 G=Dp)m/s Since s > 2 and p < 1/3, it follows that W(F,)) < 22™/3_ It follows
from Proposition 5.1 and Lemma 4.1 that Ny(w) > 0, if (q/16)’”/3 > 4é, where
eq, < 1.06 - 10**. This inequality is satisfied for g > 27 and m > 642.

For m < 642 we have that my < m < 729 < 2(1 L since p < 1/3, ¢ > 27 and
s > 2,1i.e. we can use Eq. (5.14) for the remaining cases. This means that if

(VAN > 4d, (‘f(z’""”) + z> ,

3¢ —2m
from Lemma 4.1, then Ny(w) > 0. This condition is satisfied for ¢ > 27 and 61 <
m < 642 and for ¢ > 834 and 17 < m < 642, provided that d;, < 4514.7. In the
remaining region, we compute dy, for each pair (g, m), and it follows that Eq. (5.15)
is satisfied for all but 26 pairs. Moreover, Eq. (5.14) implies that if

(VG/VO™ > 4W?(q) <q2(2m_3) +2> 7 (5.16)

3¢ —2m

(5.15)

then Ny (w) > 0. We end up with 26 pairs (g, m), not yet settled. Those pairs are
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(31,17), (27,18), (29, 18), (31,18), (32, 18), (37, 18), (41, 18), (43, 18), (47, 18),
(49, 18), (61,18), (27, 20), (29, 20), (31, 20), (32, 20), (37, 20), (41, 20), (43, 20),
(47,20), (29, 22), (27, 24), (29, 24), (31, 24), (32, 24), (37, 24) and (43, 24).

We explicitly compute W(qp) for those pairs and check that they satisfy the latter
inequality.

Next we focus on the case when g = 23 or 25. In that case, since 23 or 5 does
not divide g, it follows that dy, < 3340.6 or dg, < 2760.4 respectively. Assume
s = 2. In that case my | ¢* — 1, that is my < 624, ie. W(F) < 22:624/3 Tt follows
from Proposition 5.1 and Lemma 4.1 that Nx(w) > 0 if g™/* > 4'72%/3¢2 _ This
condition is satisfied for ¢ = 23, m > 759 and d,, < 3340.6 and for g = 25, m > 739
and dy, < 2760.4. For now, we consider only the pairs (g, m) where m > 530 and a
quick computation reveals that in the remaining region only 3 pairs, namely (23, 552),
(25,624) and (25, 650) fail to satisfy ¢"™/* > 41+2'624/36qu, if we compute d, explicitly
and demand s = 2. Finally, we verify that all 3 pairs satisfy ¢"™/* > 4W(F,)*d , where
W(F,) and dg, are computed explicitly for each pair.

S

For m < 529, we have that m; < m < 530 < ﬁ, which means we can use
Eq. (5.14) for the remaining cases, i.e. if Eq. (5.15) is satisfied, then Ny(w) > 0. This
condition is satisfied for g > 23, 67 < m < 759 and d,, < 3340.6. For the remaining
cases, namely g € {23,25} and 17 < m < 67, we compute d, for each pair and check

that Eq. (5.15) is satisfied for all but 16 pairs (g, m), namely

(23,17), (25,17), (23, 18), (25, 18), (23, 20), (25, 20), (23, 21), (25, 21), (23, 22),
(25,22), (23,24), (25,24), (23, 28), (23,30), (25,30) and (23, 36).

We explicitly check those pairs and find that only (23, 24) satisfies s = 2, but that pair
satisfies Eq. (5.16), where W(qq) is replaced by its exact value.

Finally, assume q = 23 or 25 and s > 3. It follows from Proposition 5.1 and
Lemma 4.1 that, for our purposes, a sufficient condition would be ¢"/* > 41"'5’"/9%%.
This condition holds for g > 23, m > 1285 and d,, < 3340.6. For the remaining cases
we can use Eq. (5.14) as a sufficient condition, since my < m < 18250.5 < %. It
follows that Ny(w) > 0, if

m/4 S g5 R ‘13(4’”_9) 2
T > @ ( 9¢> — 4m te)

which holds for g > 23, 66 < m < 1285 and d;, < 3340.6. From the remaining
pairs, i.e. (g, m) where g € {23,25} and 17 < m < 66, we exclude those who satisfy
the latter inequality (where dg, is explicitly computed for each pair) and those for
who s < 2 or my < 4. We are now left with only 11 possible exception pairs, namely
(23,17), (23, 18), (23, 20), (23, 21), (23, 28), (23,30), (23, 36), (25, 17), (25, 18), (25, 21)
and (25, 22). Moreover, a computation reveals that all of them satisfy

gm=9) 2) ,

m/2 4W2

which is a sufficient condition for our purposes. In that computation, W(q) is com-
puted explicitly for each pair (g, m). O

Summing up, in this section we proved the following.
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Theorem 5.22. Let q > 23 be a prime power, m > 17 an integer and A = (f Z) €

GL;(Fy), such that if A has exactly two non-zero entries and q is odd, then the quotient
of these entries is a square in Fgn (thus A may have two, three or four non-zero entries).
There exists some x € Fgn such that both x and (ax + b)/(cx + d) are simultaneously
primitive and free over .

Example. As a demonstration of the above, assume g = 23, m = 18and A= (). In
that case, our aim is to find some x € Fy3:s, such that both xand (2x+ 1)/(x+ 1) are
simultaneously primitive and free over F,;. We represent Fagis as Zog (), where o is a
root of X'*+ X" +-18X! +2X"0+ X’ +18X° +3X" +16 X°+21X° +11X° +3X* +19X+5. A
quick computation reveals that the set of elements satisfying these conditions include
a+ 1, 2a + 5 and 3a + 3 among others.



APPENDIX A

Computer input and output

Here, in the appendix, we present all the raw computer input and output described
throughout the text. Throughout this work, the program Sage! was exclusively used.

A.1 Computations of Chapter 3

These are the commands used to generate Table 3.1.

def mypi(q,n):

if prime_divisors(n) == [2]:
return (1/(2*n))*(q*n-1)
else:
result=0

for d in divisors(n):
if is_odd(d):
result=result+(1/(2*n))*moebius(d)*qr(n/d)
return result
A=[]
for n in range(3,27):
q=3
while mypi(q,n) <= (floor(n/2)*(floor(n/2)+5)/n)*(qr(1/2)+1)* (g (floor(n/2)/2)-1)*qr(n/2):
q=q+1
A.append([n,q])
A

[[3, 142], [4, 838], [5, 32], [6, 55], [7, 16], [8, 20], [9, 10], [10, 12], [11, 8], [12, 8], [13, 6], [14, 7], [15, 5], [16, 6], [17, 5], [18
5], [19, 4], [20, 4], [21, 4], [22, 4], [23, 4], [24, 4], [25, 3], [26, 4]]

These are the commands used in order to deal with the remaining cases of Ta-
ble 3.1. The output of the below program, combined with Table 3.1 and Corollary 3.10,
proved Theorem 3.11.

Here we create a dictionary (exc) with all possible exceptions,
according to Table 3.1
exc={}
for q in range(3,839):
if is_prime_power(q) and is_odd(q):
exc.update({q:[]})

1http://www.sagemath.org/
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for alpha in A:
for q in range(3,alpha[1]):
if is_prime_power(q) and is_odd(q):
exc[q].append(alpha[0])
Our dictionary, 'exc', is now complete, according to Table 3.1.
numtopoly takes as input a degree (n), an integer (i), which is assumed
to be between 0 and gqA(n-1)-1, a finite field (F) and the degree and the
value of the prescribed coefficient. It returns a self-reciprocal
polynomial of degree 2*n, distinct for each i within range.
def numtopoly(n,i,F,fixed_coef,fixed_deg):
q=order(F); P.<x>=PolynomialRing(F)
f=xA(2*n)+1+fixed_coef* (x/(fixed_deg)+xA(2*n-fixed _deg)); j=1
while i!=0 and j!=n:
if j<fixed_deg:
f=f+1ist(F) [i%q]* (xAj+x7(2*n-3))
else:
f=f+1ist(F) [i%q]* (xA(j+1)+xA(2*n-j-1))
i=floor(i/q); j=j+1
f=f+1ist(F)[i%q]*x*n
return f

Wi

checkirr takes as input the degree of the polynomial, the degree and the
value of the prescribed coefficient and the finite field and checks the
irreducibility of all possible self-reciprocal polynomials with this
prescribed coefficient. It stops at the first valid polynomial it finds. If
the search is successful it returns "True" and the polynomial, otherwise,
it returns "False"
win
def checkirr(n,fixed_coef,fixed_deg,F):
for i in xrange (1,order(F)A(n-1)):
f=numtopoly(n,i,F,fixed_coef, fixed_deg)
if f.is_irreducible():
return True,f
return False

Wi

Here we perform the actual calculations...

win

f=open('sage_output.txt','w')

f.write(' ----- Start of file ----- \n'")

f.close()

for q in exc:
f=open('sage_output.txt','a’')
£owrite (" \N\N-m = m e e e o )
f.write('\n
f.write('\n
if is_prime(q):

F=GF(q)
f.write('\nF_'+str(q)+'=Z_"+str(q))
else:
F=GF(q,'b")
f.write('\nF_'+str(q)+'~=Z_'+str(divisors(q)[1])+"'[x]/"'+str(F.modulus()))
f.close()

for n in exc[q]:
f=open('sage_output.txt','a')
f.write('\n -------- Checking n='+4str(n)+' ----------- ")
f.close()
for k in range(1,floor(n/2)+1)
for a in F:
f=open('sage_output.txt','a')
f.write('\na="'+str(a)+' k='+str(k)+' '+str(checkirr(n,a,k,F)))
f.close()

The file sage_output.txt includes our results.

Wi

The resulting file, sage_output. txt, is too large? to be included in this document.
The interested reader can find it online®, while its format is self-explained.

2 Although it is a text file, it is larger than 7.5mb!
Shttp://www.math.uoc.gr/~gkapet/hm/hm-results. txt
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A.2 Computations of Chapter 4

These are the commands used to complete the proof of Lemma 4.1.

def c(a,known_non_divisors):
s=0; gin=1.0; p=2
while p < 27a:
if p not in known_non_divisors:
gin=gin*p; s=s+1
p=Primes () .next(p)
return 24s/gin.nth_root(a)
c(4,[1),¢c(8,[1),c(12,[1),c(4,[2]),c(4,[3]1),c(4,[5]),c(4,[7]),c(4, [11]),c(8,[3]),c(8,[2]),
c(8,[51),c(8,[23])

(4.86173341033942, 4514.62651178517, 1.05730734177260e24, 2.89080398141104, 3.19920049962530, 3.63499356488677,
3.95399080724057, 4.42699790605150, 2589.59584032557, 2461.61756059865, 2760.34320131056, 3340.47181248841 )

These are the commands used to prove Proposition 4.15.

won

Here we use Eq.(4.7) as described in the first two paragraphs of the proof,
in order to deal with the vast majority of pairs and remain with just a finite
set of possible exceptions.
list=[[17,4.9,4],[16,2.9,3],[13,4.7,4],[11,4.5,4],[9,3.2,4],(8,2.9,3],[7,4,4],
[5,3.7,4],(4,2.9,3]1,[3,3.2,4],[2,2.9,3]]
for alpha in list:

m=0

while alpha[0]A(m/4) <= 3*4ralpha[2]*alpha[1]:

m=m+1

alpha.append(m)

list

[[17, 4.90000000000000, 4, 12], [16, 2.90000000000000, 3, 10], [13, 4.70000000000000, 4, 13], [11, 4.50000000000000, 4, 14],
[9, 3.20000000000000, 4, 15], [8, 2.90000000000000, 3, 13], 7, 4, 4, 17], [5, 3.70000000000000, 4, 20], [4, 2.90000000000000
3, 19], [3, 3.20000000000000, 4, 29], [2, 2.90000000000000, 3, 37]]

list=[[11,4.5,1],(10,3.7,2],[9,3.2,1],[8,2.9,1],(7,4,1],(6,3.2,2],(6,2.9,3],
[5,3.7,1],(4,2.9,1],[4,4.9,2],[3,3.2,1]]
for alpha in list:

q=0

while g~ (alpha[0]/4) <= 3*4ralpha[2]*alpha[1]:

q=q+1

alpha.append(q)

list

[[11, 4.50000000000000, 1, 5], [10, 3.70000000000000, 2, 8], [9, 3.20000000000000, 1, 6], [8, 2.90000000000000, 1, 6], [7, 4, 1,
10], [6, 3.20000000000000, 2, 29], [6, 2.90000000000000, 3, 68], [5, 3.70000000000000, 1, 21], [4, 2.90000000000000, 1, 35], [4
4.90000000000000, 2, 236], [3, 3.20000000000000, 1, 130]]

won

Here, we create the list of possible exceptions so far
A=[[16,6],[16,4],[9,12],[9,6],(8,12],([8,6],[7,14],[7,7],[5,15],[5,10],[5,5],[4,16],
[4,12],([4,8],[4,6],[3,27],[3,18],[3,12],[3,9],[3,6],[2,32],[2,24],[2,16],[2,12],
[2,8],[2,6],[64,6],[12,6],[27,6],(2,4],[4,4],[8,4],[16,4],[32,4]]
for q in range(2,236):
if is_prime_power(q) and q%4==3:
A.append([q,4])
for q in range(2,130):
if is_prime_power(q) and q%3!=1:
A.append([q,3])
print len(A),A

86

won

Here, we compute m_0 for better results, taking into account Lemma 4.14.
W
def mO(q,m):
if m==3:
n=1
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elif m==4:
n=2
else:
n=m
while n%(divisors(q)[1])==0:
n=n/divisors(q)[1]
return n

W

chk performs the actual check, with all quantities explicitly computed.
def chk(beta):
delta=1; qO=beta[0]rbeta[1]-1; lis=prime_divisors(q0); i=len(lis); lis2=[]
while delta>0 and i>=0:
t=len(lis)-1i
if beta[0]A(beta[1]/2) > 3*2Alen(lis)*4”mO(beta[0],beta[1])
*2r(-t)* ((t-1)/delta+2):
return "success",lis2
i=i-1; delta=delta-1/1lis[i]
lis2.append(lis[i])
if delta<=0:
return "fail","delta<=0"
if i<0:
return "fail","no more primes"
B=[]; c=[]; D=[]
for beta in A:
print beta,chk(beta)
if chk(beta)[0]=='fail':
B.append(beta)
elif chk(beta)[1]==[]:
C.append(beta)
else:
D.append(beta)

[16, 6] ('success’, [241, 17, 13, 7, 5]) [16, 4] (success’, []) [9, 12] (success’, []) [9, 6] (success’, [73, 13, 7, 5]) [8, 12]
(’success’, []) [8, 6] (‘fail’, 'no more primes’) [7, 14] (success’, []) [7, 7] (success’, []) [5, 15] (success’, []) [5, 10] ('success’,
[ [5, 5] (fail’, 'no more primes’) [4, 16] (’success’, []) [4, 12] (success’, [241, 17, 13, 7, 5]) [4, 8] ('success’, []) [4, 6] (fail’,

‘no more primes’) [3, 27] (success’, []) [3, 18] ('success’, []) [3, 12] (‘fail’, ‘'no more primes’) [3, 9] (’success’, []) [3, 6]
(fail’, 'no more primes’) [2, 32] (success’, []) [2, 24] (‘success’, [241, 17, 13, 7, 5]) [2, 16] (success’, []) [2, 12] (‘fail’, 'no
more primes’) [2, 8] ("fail’, 'no more primes’) [2, 6] ("fail’, 'no more primes’) [64, 6] ('success’, []) [12, 6] (success’, [157,

19, 13, 11, 7]) [27, 6] ('success’, []) [2, 4] (fail’, 'no more primes’) [4, 4] (fail’, 'no more primes’) [8, 4] (fail’, 'no more

primes’) [16, 4] ('success’, []) [32, 4] ('success’, []) [3, 4] ('fail’, 'no more primes’) [7, 4] ('fail’, ’delta<=0") [11, 4] (fail’,
“delta<=0") [19, 4] (fail’, *delta<=0) [23, 4] (fail’, delta<=0") [27, 4] (’success’, [73, 13, 7, 5]) [31, 4] (’success’, [37, 13, 5])
[43, 4] (success’, [37, 11, 7]) [47, 4] (success’, [23, 17, 13]) [59, 4] ('success’, []) [67, 4] ('success’, []) [71, 4] (success’, [])

[79, 4] (success’, []) [83, 4] (success’, []) [103, 4] ('success’, []) [107, 4] (success’, []) [127, 4] (success’, []) [131, 4]
(’success’, []) [139, 4] ("success’, []) [151, 4] (success’, []) [163, 4] (success’, []) [167, 4] ('success’, []) [179, 4] (’success’, [])
[191, 4] (success’, []) [199, 4] (success’, []) [211, 4] (success’, []) [223, 4] ('success’, []) [227, 4] (’success’, []) [2, 3] (fail’,
’no more primes’) [3, 3] ("fail’, 'no more primes’) [5, 3] ('fail’, 'no more primes’) [8, 3] ('fail’, 'no more primes’) [9, 3] ('fail’,

’no more primes’) [11, 3] (fail’, 'no more primes’) [17, 3] ('success’, []) [23, 3] (fail’, 'no more primes’) [27, 3] (success’,
[D) [29, 3] (success’, [67, 13]) [32, 3] (success’, []) [41, 3] ("success’, []) [47, 3] (success’, []) [53, 3] (success’, []) [59, 3]
(’success’, [1) [71, 3] (success’, []) [81, 3] (success’, []) [83, 3] (success’, []) [89, 3] ('success’, []) [101, 3] (success’, [])

[107, 3] (success’, []) [113, 3] ('success’, []) [125, 3] (success’, []) [128, 3] ("success’, [])

len(B),len(C),len(D)
(23, 53, 10)

These are the commands used to prove Proposition 4.16.

Wi

The commands here follow closely the proof of Proposition 4.16
and are self-explanatory.
for m in range(1,8):
q=1
while gA(m*(g-1)/4) < 3*27(q-1)*(gr2-2*q+2)*4.9:
q=q+1
print [m,q]

[1,43] [2, 14] [3,9] [4, 7] [5, 6] [6, 5] [7, 4]
A=[[41,40],[37,36],[32,31],[31,30],[29,28],[27,26],[25,24],[23,22],[19,18],[17,16],

[16,15],[13,12],[11,10],[9,8],[8,7],[7,6],[5,4]1,[4,3],[8,14],[5,20]]
B=[]
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for alpha in A:
if alpha[0]~(alpha[1]/2) < 3*27(alpha[0]-1)*(alpha[0]~2-2*alpha[0]+2)*
2nrlen(prime_divisors(alpha[0]ralpha[1]-1)):
B.append(alpha)
len(B),B

(8, [[16, 15], [13, 12], [11, 10], [9, 8], [8, 71, [7, 6], [5, 4], [4, 3]])

These are the commands utilized to prove Proposition 4.17

The commands here follow closely the proof of Proposition 4.17
and are self-explanatory.
mo=12; A=[]
while m0>2:
q=2*"m0+1; mulier=1
while gA(mulier*m0/4) <= 3*4.9*(q*(2*m0-1)/(q-2*m0)+2):
mulier=mulier+1
if mO0 in [3,4]:

mulier=2
for i in range(1l,mulier):
q=2*m0+1
while gA(i*m0/4) <= 3%4.9*(q*(2*m0-1)/(q-2"m0)+2):
q=q+1
A.append([m0,q,i])
mO0=m0-1
A
[[11, 24, 1], [10, 23, 1], [9, 24, 1], [8, 26, 1], [7, 31, 1], [6, 41, 1], [5, 66, 1], [5, 13, 2], [4, 139, 1], [3, 488, 1]]
B=[]

for alpha in A:
for q in range(2,alpha[1]):
if is_prime_power(q) and q%alpha[0]==1 and alpha[0]!=(q-1) and alpha[2] in divisors(q):
B.append([q,alpha[0]*alpha[2]])
len(B)

89

def moO(beta):
n=beta[1]
while n%(divisors(beta[0])[1])==0:
n=n/divisors(beta[0])[1]
return n
c=[]
for beta in B:
if beta[0]A(beta[1]/2) <= 3*2A(len(prime_divisors(beta[0]Arbeta[1]-1)))*
(beta[0]* (2*mO(beta)-1)/(beta[0]-2*m0(beta))+2):
C.append(beta)
len(C),C

(20, [[13, 6], [11, 5], [16, 5], [9, 4], [13, 4], [17, 4], [29. 4], [7, 3], [13, 3], [16, 3], [19, 3], [25, 3], [31, 3], [37, 3], [43, 3], [49, 3],
[61,3], [67, 3], [79, 3], [121, 3]])

def chk(beta):
delta=1-2*m0(beta)/beta[0]; lis=prime_divisors(beta[0]Abeta[1]-1); i=len(lis); lis2=[]
while delta>0 and i>=0:
t=len(lis)-i
if beta[0]A(beta[1]/2) > 3*27(len(lis)-t)*((2*mO(beta)+t-1)/delta+2):
return "success",lis2
i=i-1; delta=delta-1/1is[i]
lis2.append(lis[i])
if delta<=0:
return "fail","delta<=0"
if i<0:
return "fail","no more primes"
for gamma in C:
print gamma,chk(gamma)

[13, 6] (fail’, ’delta<=0’) [11, 5] ('fail’, ’delta<=0") [16, 5] (success’, [41, 31]) [9, 4] (’fail’, ’delta<=0") [13, 4] ('fail’,
“delta<=0") [17, 4] (fail’, *delta<=0") [29, 4] ('success’, [421]) [7, 3] (fail’, *delta<=0") [13, 3] (fail’, ’delta<=0") [16, 3] (‘fail’,
"delta<=0") [19, 3] (‘fail’, "delta<=0’) [25, 3] (fail’, ’delta<=0") [31, 3] (success’, [331, 5]) [37, 3] (success’, [67]) [43, 3]
(’success’, [631]) [49, 3] (success’, [43]) [61, 3] (success’, [97]) [67, 3] (success’, [31]) [79, 3] ("success’, [43]) [121, 3]
(’success’, [37])
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These are the computer commands used in the proof of Proposition 4.19.

W

The commands follow closely the procedure described in the proof.
First, we consider rho=1/2.

i

m0=8; m=3*"m0; q=6

print gqA(m/4)>3*2Am0*4.9* (qr2*(q-2)/(qr2-q+1)+2)

m=5*m0; q=5

print gA(m/4)>3*2/m0*4.9* (q”r2*(q-2)/(qr2-q+1)+2)

True True
m=m0
while g~ (3*m/8)<=3*2Am0*4514.7* (q*2*(q-2)/(q"2-q+1)+2):
q=q+1
q
1863

m=8; qg=m/2+1

while g~ (3*m/8)<=3*2Am*4514.7* (q*2*(q-2)/(q"2-q+1)+2):
m=m+1; q=m/2+1

m,q

(33,35/2)

def moO(beta):
n=betal[1]
while n%(divisors(beta[0])[1])==0:
n=n/divisors(beta[0])[1]
return n
A=[]
for m in range(8,33):
for q in range(5,1863):
if is_prime_power(q) and is_odd(q) and m==mO([q,m]) and m==2*gcd(m,q-1):
A.append([q,m])
len(A)

310

B=[]
for alpha in A:
if alpha[0]~(alpha[1]/4)<=3*4.9*27alpha[1]*
(alpha[0]A2* (alpha[1]-2)/(2*alpha[0]Ar2-alpha[1])+2):
B.append(alpha)
len(B),B

(22, [[5. 8], [13, 8], [29, 8], [37, 8], [53, 8], [61, 8], [101, 8], [109, 8], [125, 8], [7, 12], [19, 12], [31, 12], [43, 12], [67, 12], [9.
16], [25, 16], [41, 16], [11, 20], [31, 20], [13, 24], [37, 24], [17, 32]])

def chk(beta):
delta=2*beta[0]~2-mO(beta); qO=beta[0]rbeta[1]-1
lis=prime_divisors(q0); i=len(lis); lis2=[]
while delta>0 and i>=0:
t=len(lis)-i
if beta[0]A(beta[1]/2) > 3*2A(len(lis)-t)*22mO(beta)*
(beta[0]A2* (mO(beta)+2* (t-1))/delta+2):
return "success",lis2
i=i-1; delta=delta-2*beta[0]72/1lis[i]
lis2.append(lis[i])
if delta<=0:
return "fail","delta<=0"
if i<0:
return "fail","no more primes"
for beta in B:
print beta,chk(beta)

(’success’, []) [101, 8] ('success’, []) [109, 8] ('success’, []) [125, 8] (success’, []) [7, 12] (fail’, ’delta<=0") [19, 12] (success’,
[1) [31, 12] (success’, []) [43, 12] (success’, []) [67, 12] (success’, []) [9, 16] (success’, [21523361, 193]) [25, 16] ('success’,
[1) [41, 16] (’success’, []) [11, 20] (success’, []) [31, 20] (success’, []) [13, 24] ('success’, []) [37, 24] (’success’, []) [17, 32]

(’success’, [])

[5, 8] (fail’, *delta<=0) [13, 8] (‘fail’, 'delta<=0") [29, 8] (’success’, []) [37, 8] (‘success’, []) [53, 8] ('success’, []) [61, 8]
]
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Now we consider rho=3/5

m0=8; m=5*m0; q=5

print gqA(3*m/8) > 3*2A(3*m0/4)*4514.7*(5*q~5-q*4-10*q+10)/(4*q*4-5*q+5)
m0=8; m=3"m0; q=9

print gqA(3*m/8) > 3*2A(3*m0/4)*4514.7*(5*qA5-q~4-10*q+10)/(4*qr4-5"q+5)

True True

A=[]
for m in [16,32,48,64,80,96,112,128,144]:

q=5

while qA(3*m/8) <= 3*2A(3*m/4)*4514.7*(5*q75-q*4-10"q+10)/(4*qr4-5"q+5):

q=q+1

A.append([q,m])

A
[[37, 16], [11, 32], [8, 48], [7, 64], [6, 80], [6, 96], [6, 112], [6, 128], [5, 144]]

B=[]

for alpha in A:
for q in range(5,alpha[0]):
if is_prime_power(q) and g%4==1 and alpha[1]==4*gcd(alpha[1],q-1):
B.append([q,alpha[1]])

[[5, 16], [13, 16], [29, 16], [9, 32]]

for beta in B:
if beta[0]A(beta[1]/2) <= 3*27(3*beta[1]/4)*2~(len(prime_divisors(beta[0]rbeta[1]-1)))
*((5*beta[0]7r4*beta[1]-16"beta[0]74)/(16*beta[0]r4-5*beta[1])+2):
print beta

[5, 16]

Here, we deal with rho=13/36

m0=16; m=3*m0; q=7
numerical_approx(q”r(3*m/8)-3*22(13*m0/18)*4514.7* ((23*q"r6*(q-1)-18*q~r6)/(18*q"6-23*(q-1))+2))

1.62841324457041e15

A=[]
for m in [36,72]:

q=7

while qA(3*m/8) <= 3%*2A(13"m/18)*4514.7*((23*q"6*(q-1)-18*qr6)/(18*qr6-23*(q-1))+2):

q=q+1

A.append([q,m])

A
[[10, 36], [7, 72]]

q=7; m=36

numerical_approx(qr(m/2)-3*2A(13*m/18)*2A(len(prime_divisors(grm-1)))*
((23*qr6*(q-1)-18"q76)/(18*qr6-23*(q-1))+2))

1.62484000598269¢15

These are the Sage commands used in the proof of Proposition 4.20.

Most of the commands follow the flow of the proof of Proposition 4.20.
First, we assume m0>=8.

m=8; q=5
while gA(m/4) <= 3*4.9*4r(m/3)*(2*m-1):
q=q+1

95
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m=8; q=5
while g~ (3*m/8) <= 3*4514.7*4~A(m/3)*(2*m-1):
m=m+1

106

won

m0 computes mO. In this proof, the large length of the lists of exceptions makes it preferable
to omit the listing itself, but rather list just the number of possible exceptions.
i
def mO(beta):
n=beta[1]
while n%(divisors(beta[0])[1])==0:
n=n/divisors(beta[0])[1]
return n
A=[]
for q in range(5,95):
if is_prime_power(q):
for m in range(8,106):
if m0([g,m])>=8 and (q-1)%m0([q,m])!=0 and (mO([g,m])!=2*gcd(m,q-1) or is_even(q))
and (mO([q,m])!=4"gced(m,q-1) or q%4!=1) and (mO([q,m])!=6"gcd(m,q-1) or g%6!=1):
A.append([q,m])
len(A)

2675

B=[]
for alpha in A:
if alpha[0]A(alpha[1]/4) <= 3*4.9*4~(mO(alpha)/3)*(2*m0(alpha)-1):
B.append(alpha)
len(B)

430

c=[]
for alpha in B:
if alpha[0]~(alpha[1]/2) <= 3*2~(len(prime_divisors(alpha[0]”alpha[1]-1)))
*4A(m0(alpha)/3)*(2*m0(alpha)-1):
C.append(alpha)
len(C)

31

sigma computes s and rho computes rho.
def sigma(beta):
s=1
while (beta[0]As-1)%mO(beta)!=0:
s=s+1
return s
def rho(beta):
x=PolynomialRing (GF(beta[0],'a'),'x"').gen()
i=0; mo=mO(beta); s=sigma(beta)
for g in divisors(x”mo-1):
if g.is_irreducible() and g.degree()!=s:
i=i+1
return i/mo
D=[]
for alpha in C:
s=sigma(alpha); g=alpha[0]; m=alpha[1]; mo=mO(alpha); r=rho(alpha)
if gr(m/2) <= 3*2~(len(prime_divisors(gqrm-1)))*4A(xr*mo)*
((2*gqrs* (1-r)*mo-s*qrs)/(s*qrs-2"(1-r)*mo)+2):
D.append(alpha)
len(D),D

4 [[5, 9], [5, 12, [7, 8], [7, 9]])

Now, we consider 5<=m0<=7

mo=5; m=mo; g=5

while gqr(m/4) <= 3*4.9"47(2"mo/3):
q=q+1

q
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347

q=5; m=4*"mo
bool(gh(m/4)>3*4.9*4A(2*mo/3))

True

A=[]
for q in range(5,347):
if is_prime_power(q):
for m in range(5,29):
if (q-1)%m0([q,m])!=0 and (mO0([q,m])==5 or mO([g,m])==6 or mO([q,m])==7):
A.append([q,m])
len(A)

184

for alpha in A:
s=sigma(alpha); q=alpha[0]; m=alpha[1]; mo=mO(alpha); r=rho(alpha)
if gqr(m/2) <= 3*2A(len(prime_divisors(qrm-1)))*4A(r*mo)*
((2*grs* (1-r)*mo-s*qrs)/(s*q”rs-2* (1-r)*mo)+2):
B.append(alpha)
len(D),D

(12, [[5, 9], [5, 12], [7, 8], [7, 91, 5. 6], [7, 5], [8, 5], [9, 5], [11, 6], [17, 6], [23, 6], [29, 6]])

won

Here, we try to apply multiplicative sieving as well...
def chk(beta):
mo=m0 (beta); s=sigma(beta); r=rho(beta); delta=s*beta[0]As-2*(1-1)*mo
qO0=beta[0]rbeta[1]-1; lis=prime_divisors(q0); i=len(lis); lis2=[]
while delta>0 and i>=0:
t=len(lis)-i
if beta[0]~(beta[1]/2) > 3*2A(len(lis)-t)*4Ar(r*mo)*
((2*beta[0]As* (1-r)*mo+s*beta[0]7rs* (t-1))/(delta)+2):
return "success",lis2
i=i-1; delta=delta-s*beta[0]rs/lis[i]
lis2.append(lis[i])
if delta<=0:
return "fail","delta<=0"
if i<0:
return "fail","no more primes"
for beta in D:
print beta,chk(beta)

[5, 9] (success’, [829, 31]) [5, 12] (fail’, ’delta<=0") [7, 8] (success’, [1201, 5]) [7, 9] (’success’, [1063, 37, 19, 3]) [5, 6] (fail’,
*delta<=0") [7, 5] (‘fail’, 'no more primes’) [8, 5] (’success’, [151, 31]) [9, 5] (’success’, [61, 11]) [11, 6] (‘fail’, delta<=0") [17,
6] (success’, [307]) [23, 6] (success’, [79]) [29, 6] ('success’, [271])

These are the commands used in the proof of Proposition 4.22.

The commands follow (not so closely as before) the flow of the proof
of Proposition 4.22. Here B will always stand as the list of possible
exception, to be consider in the end for the possibility of successful
multiplicative sieving. We begin with q=4.

q=4; m=4; r=1/5

bool(qrm>3*2.9*4A(3*m/5))

True
while qA(3*m/8)<=3*2461.7*4A(xr*m)* (4*m-3):
m=m+1
m
60
m=8
while g~ (3*m/8)<=3"2461.7*4r(xr*m/2)* (2*m-3):
m=m+1
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35

W

m0 will compute m_0 for given q,m.
def moO(beta):
n=beta[1]
while n%(divisors(beta[0])[1])==0:
n=n/divisors(beta[0])[1]
return n
A=[]
for m in range(5,60):
mo=mO0([q,m])
if (g-1)%mo!=0 and mo>4 and (mo==m or (mo==2*m and m<35)):
A.append([q,m])
len(A)

28

sigma computes s, rho computes rho, while w computes d_r.
def sigma(beta):
s=1
while (beta[0]7s-1)%mO(beta)!=0:
s=s+1
return s
def rho(beta):
x=PolynomialRing (GF(beta[0],'a'),'x"').gen()
i=0; mo=mO(beta); s=sigma(beta)
for g in divisors(x”mo-1):
if g.is_irreducible() and g.degree()!=s:
i=i+1
return i/mo
def w(a,n):
s=0; gin=1.0; p=2
while p < 27a:
if n%p==0:
gin=gin*p
s=s+1
p=Primes() .next(p)
return 2As/gin.nth_root(a)
win
The computation of rho seems to be even more expensive (in computer time) than the
computation of W(q_0). As a result we first use the generic bounds for rho and use
its exact value only as a last resort. This is the difference here between the
lists B and C.
win
C=[[4,45]]
for alpha in A:
s=sigma(alpha); g=alpha[0]; m=alpha[1]; mo=mO(alpha)
if gr(3*m/8) <= 3*w(8,q0)*4r(r*mo)* ((2*grs* (1-r)*mo-s*qrs)/(s*qrs-2*(1-r)*mo)+2):
C.append(alpha)
len(C),C

(7, [[4, 45, [4, 5, [4, 7], [4, 9], [4, 11], [4, 13], [4, 15]])

W

Here, we eventually compute rho for the remaining pairs.
B=[]
for alpha in C:

s=sigma(alpha); g=alpha[0]; m=alpha[1]; mo=mO(alpha); r=rho(alpha)

if gr(m/2) <= 3*2~(len(prime_divisors(qrm-1)))*4A(xr*mo)*

((2*grs* (1-r)*mo-s*grs)/(s*qrs-2* (1-r)*mo)+2):
B.append(alpha)

len(B),B

(4, [[4.5]. [4, 7], [4, 9], [4, 15]])

W

Now, we consider q=3.
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q=3; m=16; r=1/4
while g~ (3*m/8)<=3%2589.6*4A(r*m)* (3*m-2):

m=m+1
m
238
m=12
while qA(3*m/8)<=3%2589.6%4A(r"m/3)* (m-2):
m=m+1
m
43
m=4
bool(qr(27*m/8)>3*2589.6%47(m/4)* (3*m-2))
True

A=[]
for m in range(5,238):
mo=m0([q,m])
if (gq-1)#%mo!=0 and mo>4 and (mo==m or (mo==3*m and m<43)):
A.append([q,m])
len(A)

155

won

We use C to avoid the computation of both rho and W(q_0) for large numbers and D
to avoid the computation of rho.
c=[]
for alpha in A:

q=alpha[0]; m=alpha[1]; mo=mO(alpha);

if qA(3*m/8) <= 3*w(8,qAm-1)*2A(mo/2)* (3*m-2):

C.append(alpha)

len(C)

78

D=[]
for alpha in C:
s=sigma(alpha); q=alpha[0]; m=alpha[1]; mo=mO(alpha)
if gr(m/2) <= 3*2~(len(prime_divisors(qrm-1)))*4A(r*mo)*
((2*(1-r)*mo-s)/(s-2*(1-r)*mo/qrs)+2):
D.append(alpha)
len(D),D

(16, [[3, 5], [3, 7], [3, 8], [3, 10], [3, 11], [3, 13], 3, 14], [3, 16], [3, 17], [3, 19], [3, 20], [3, 22], [3, 26], [3, 28], [3, 32], [3, 40]])

We do not initiate B, new possible exception pairs are simply added to the list.
for alpha in D:
s=sigma(alpha); q=alpha[0]; m=alpha[1]; mo=mO(alpha); r=rho(alpha)
if gr(m/2) <= 3*2A(len(prime_divisors(qrm-1)))*4r(r*mo)*
((2*(1-r)*mo-s)/(s-2*(1-r)*mo/qrs)+2):
B.append(alpha)
len(B),B

(11, [[4, 5], [4, 7], [4, 9], [4, 15], [3, 5], [3, 7], [3. 8], [3, 10], 3, 11], [3, 16], 3, 20]])

won

Finally, we consider g=2. Previous comments regarding A,B,C and D apply here as well.

q=2; m=4; r=1/6
bool(qA(8*m/4)>3*2.9*4A(7*m/12))

True
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m=4
while g~ (3*m/8)<=3%2461.7*4A(m/6)*(5*m-4):
m=m+1

585

m=4
while qA(3*m/8)<=3%2461.7%4A(m/12)* (5*m/2-4):
m=m+1

100

m=4
while qA(3*m/8)<=3*2461.7*4A(m/24)* (5*m/4-4):
m=m+1

66

A=[]
for m in range(5,585):
mo=m0([q,m])
if (g-1)%mo!=0 and mo>4 and (mo==m or (mo==2*m and m<100) or (mo==4"m and m<66)):
A.append([q,m])
len(A)

290

c=[]
for alpha in A:
q=alpha[0]; m=alpha[1]; mo=mO(alpha);
if qAr(3*m/8) <= 3*w(8,qrm-1)*4A(mo/6)* (5*m-2):
C.append(alpha)
len(C)

148

D=[]
for alpha in C:
s=sigma(alpha); g=alpha[0]; m=alpha[1]; mo=mO(alpha)
if gr(m/2) <= 3*2~(len(prime_divisors(qrm-1)))*4A(xr*mo)*
((2*grs*(1-r)*mo-s*grs)/(s*qrs-2*(1-r)*mo)+2):
D.append(alpha)
len(D),D

(22, [[2,5]. [2, 7], [2, 9], [2, 11], [2, 13], [2, 15], [2, 17], [2, 19], [2, 21], [2, 23], [2, 25], [2, 27], [2, 29], [2, 31], [2, 33], [2, 35],
[2,39], [2, 43], [2, 45], [2, 51], [2, 55], [2, 63]])

for alpha in D:
s=sigma(alpha); g=alpha[0]; m=alpha[1]; mo=mO(alpha); r=rho(alpha)
if gr(m/2) <= 3*2A(len(prime_divisors(grm-1)))*4r(r*mo)*
((2*(1-r)*mo-s)/(s-2*(1-r)*mo/qrs)+2):
B.append(alpha)
len(B),B

(17, [[4, 5], [4, 7], [4, 9], [4, 15], [3, 5], [3, 7], [3. 8], [3, 10], [3, 11], [3, 16], [3, 20], [2, 5], [2, 7], [2, 9], [2, 11], [2, 15], [2, 21]])

The function chk checks whether multiplicative sieving can be successfully applied.
def chk(beta):
mo=m0 (beta); s=sigma(beta); r=rho(beta); delta=s*beta[0]7s-2*(1-1r)*mo
qO0=beta[0]Arbeta[1]-1; lis=prime_divisors(q0); i=len(lis); lis2=[]
while delta>0 and i>=0:
t=len(lis)-i
if beta[0]A(beta[1]/2) > 3*2A(len(lis)-t)*4A(r*mo)*
((2*beta[0]7rs* (1-r)*mo+s*beta[0]rs* (t-1))/(delta)+2):
return "success",lis2
i=i-1; delta=delta-s*beta[0]As/lis[i]
lis2.append(lis[i])
if delta<=0:
return "fail","delta<=0"
if i<0:
return "fail","no more primes"
for beta in B:
print beta,chk(beta)
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[4, 5] (‘fail’, 'no more primes’) [4, 7] (‘fail’, ‘'no more primes’) [4, 9] (‘fail’, 'no more primes’) [4, 15] ('fail’, ’delta<=0") 3, 5]
(fail’, 'no more primes’) [3, 7] (‘fail’, 'no more primes’) [3, 8] ('fail’, ’delta<=0") [3, 10] ('fail’, 'no more primes’) 3, 11]
(’success’, [3851]) [3, 16] (fail’, 'no more primes’) [3, 20] ('success’, [1181]) [2, 5] (’fail’, 'no more primes’) [2, 7] (’fail’, 'no
more primes’) [2, 9] ("fail’, 'no more primes’) [2, 11] (’fail’, 'no more primes’) [2, 15] ('fail’, 'no more primes’) [2, 21] (‘fail’,
’no more primes’)

These are the commands used in the proof of Proposition 4.23.

won

The commands simply follow the flow of the proof of Proposition 4.24.
m=2; g=2
while gA(m/4)<=2"4.9:

q=q+1

97

A=[]
for q in range(2,97):
if is_prime_power(q):
A.append([q,m])
len(A),A

(34, [[2.2], [3, 2], [4, 2], [5. 2], [7. 2], [8, 2], [9, 2], [11, 2], [13, 2], [16, 2], [17, 2], [19, 2], [23, 2], [25, 2], [27, 2], [29, 2], [31,
2], [32, 21, [37, 2], [41, 2], [43, 2], [47, 2], [49, 2], [53, 2], [59, 2], [61, 2], [64, 2], [67, 2], [71, 2], [73, 2], [79, 2], [81, 2], [83,
2], [89, 2]])

won

chk tries to perform multiplicative sieving, if necessary. It its returned value is
('success', []) it means that no multiplicative sieving was necessary .
def chk(alpha):
q=alpha[0]; m=alpha[1]; delta=1-1/q; lis=prime_divisors(q*m-1); i=len(lis); lis2=[]
while delta>0 and i>=0:
t=len(lis)-i
if gr(m/2) > 2A(len(lis)-t)*(t/delta+2):
return "success",lis2
i=i-1; delta=delta-1/lis[i]
lis2.append(lis[i])
if delta<=0:
return "fail","delta<=0"
if i<0:
return "fail","no more primes"
for alpha in A:
print alpha,chk(alpha)

[2, 2] (fail’, "delta<=0’) [3, 2] ('fail’, 'delta<=0’) [4, 2] ('fail’, 'no more primes’) [5, 2] ('fail’, ‘delta<=0’) [7, 2] ('fail’,
’delta<=0’) [8, 2] ('success’, [7]) [9, 2] ('success’, []) [11, 2] (fail’, *delta<=0’) [13, 2] ('success’, [7, 3]) [16, 2] ('success’,
[17]) [17, 2] (success’, []) [19, 2] (success’, []) [23, 2] (success’, []) [25, 2] (success’, []) [27, 2] (Csuccess’, []) [29, 2]
(success’, [7]) [31, 2] (success’, []) [32, 2] (success’, []) [37, 2] (success’, []) [41, 2] (success’, []) [43, 2] ('success’, []) [47,
2] (success’, []) [49, 2] (’success’, []) [53, 2] ('success’, []) [59, 2] (success’, []) [61, 2] ('success’, []) [64, 2] ('success’, [])
[67, 2] (success’, []) [71, 2] (’success’, []) [73, 2] (success’, []) [79, 2] (success’, []) [81, 2] (success’, []) [83, 2] ("success’,
[1) [89, 2] (success’, [])

These are the commands used for the proof of Theorem 4.25.

exc is a dictionary where the keys are the cardinalities of the base fields who appear as

possible exceptions and each key is a list of all possible exception degrees. This agrees

with Table 4.1.

exc={2:[12,8,6,4,3,5,7,9,11,15,21,2], 3:[12,6,4,3,5,7,8,10,16,2], 4:[6,4,3,5,7,9,15,2],
5:[5,3,4,8,16,6,12,2], 7:[4,6,3,12,5,2], 8:[6,4,3,7], 9:[3,8,4], 11:[4,3,10,5,6,2],
13:[12,3,4,6,8], 16:[15,3], 17:[4], 19:[4,3], 23:[4,3], 25:[3]}

wn
mat takes as input the finite field F and returns a list with all the matrices (where each
matrix is a list itself) to be investigated. It was built according the arguments of
Section 4.5.
o
def mat(F):

q=F.cardinality()
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if gq==2:
return [[1,1,1,0],[1,0,1,1],[0,1,1,1]]
lis=[]
for i,a in enumerate(F):
for j,b in enumerate(F):
for k,c in enumerate(F):
for 1,d in enumerate(F):
if (a*d-b*c)!=0 and ((d==1 and b==1 and a*c!=0) or
(d==0 and a!=0 and b==1 and c==1) or (a==1 and d==1 and b==0 and c!=0)
or (d==1 and b==1 and c==0 and a!=0) or (d==1 and b==1 and c!=0 and a==0)):
lis.append([1l,x,y,z])
return lis

W

is_primitive checks whether f is primitive. Note that f is an element of F_{q”n},
represented as a polynomial of F_q[X]/<g(X)>. Here we check whether fA((gq”n-1)/p)=1 for
all prime divisors of g”n-1. If not then f is primitive.
def is_primitive(f):

f1=£(Y)

for p in prime_divisors(F.cardinality()Ag.degree()-1):

if f1A((F.cardinality()rg.degree()-1)/p)==1:
return False
return True

won

is_free checks whether f (the element) is free. This criterion is based on
Corollary 2.38 of [44].
def is_free(f):

f1=£(Y)

m=matrix(S, n, lambda i, j: f1A(qr((i+j)%n)))

return bool(m.determinant()!=0)

Wi

numtopoly transforms a number into a polynomial. Its purpose is to turn integers into
elements of F_{g"n}, who are represented as polynomials.
def numtopoly(m):
m0=m; poly=0; i=0
while m0!=0:
poly=poly+list(F)[m0%q]*X" (i)
i=i+1; mo=floor(m0/q)
return poly

wn

chkmatrix takes a 2x2 matrix as input and assumes the presence of a list of elements that are
already known to be primitive and free. Then it seeks for an element in that list, such that
the Mobius transformation of this element that this matrix defines is free. Once the first
such element is found it exits, returning True and the successful element, but if the list is
exhausted without success it returns False and the matrix.
i
def chkmatrix(A):

for f in lopn:

if is_free((A[0]*f+A[1])/(A[2]*£+A[3])):
return True,f
return False,A

Here, we perform the actual calculations. First we the dictionary exc is opened and for each
q we first build F_q and a list of matrices to be considered. For each n in exc[q] we build
an irreducible g in F_q[X] of degree n, such that F_{q”n}=F_q[X]/<g(X)>. Then we build a list,
named lopn of primitive and free elements of F_{q”n}, of size <=max_pn, a number initially
defined, in order to speed up the list creation. This, of course, means that lopn can be
incomplete and insufficient results may occur; a warning is displayed if this is the case.
Then for all the matrices we check the validity of our statement.
max_pn=200
for q in exc:

F.<a>=GF(q, 'a'); FX=PolynomialRing(F, 'X'); X=FX.gen(); matrices=mat(F)

Print '----meee e

print '

print '
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reader can find it online*. Moreover, the results are nicely presented in the tables of

print ' F_',

for n in exc[
g=FX.irreducible_element (n)

S=FX.quot
print '\n
print '
print '

i=1; lopn
while i<m
f=num

q,'= (Z /',F.characteristic(),'z)[x] /',F.modulus()

ql:

ient(g,'Y'); Y=S.gen()

=[]
ax_pn and i<g’n:
topoly (i)

if is_free(f) and is_primitive(f):

1

i=i+1

if i==max
print
for j in
print

opn.append(f)

_pn:

'Warning: max_pn reached,
range (0, len(matrices)):
j,chkmatrix(matrices[j])

if not satisfied consider increasing it...'

The output of this program is too large to be included here, but the interested

Section 4.5.
Here, note that on the first attempt (where max_pm=200 as above) for some pairs,
namely (3,12), (5,5), (8,12), (8,7) and (13, 6), the results were insufficient, while for
(5,4) this restriction prohibited the full construction of the list of primitive and free
elements, hence not finding a suitable element for some matrices did not necessarily
imply a genuine exception. Nonetheless, we executed the program again for the pairs
in question, with max_pm=5000, and those issues were resolved.

A.3 Computations of Chapter 5

These are the commands used for the proof of Proposition 5.15.

Here, we follow the flow of the proof of Proposition 5.15 closely.

won

q=23; m=17;

c=4514.7

while gA(m/4)<=475%cAr2:

q=23; m=17;

q=q+1

c=4514.7

while gA(m/4)<=4A5%cA2:

m=m+1

def mO(beta):

n=beta[1]
while n%(divisors(beta[0])[1])==0:

n=n/divisors(betal[0])[1]

return n

A=[]

for q in range(23,268):

for m in range(17,31):

31

if is_prime_power(q) and mO([q,m])<=4:
A.append([q,m])

len(A),A

‘http://www.math.uoc.gr/~gkapet/pn/pn-results.txt
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20

for [q,m] in A:
if gr(m/2)<=4~(len(prime_divisors(qrm-1))+1+m0([q,m])):
print q,m

These are the Sage commands of Proposition 5.16.

W

The commands follow closely the arguments of the proof.
c=4514.7; q=23; m=q-1
while gr(m/4)<=27(q+1)*((g-1)A2+1)*cA2:
q=q+1; m=q-1
q

73

c=4514.7; q=23; m=2*(q-1)

while gqr(m/4)<=27(q+1)* ((g-1)A2+1)*cr2:
q=q+1; m=2*(q-1)

q

27

c=4514.7; g=23; m=3*(q-1)

while qr(m/4)<=27(q+1)* ((g-1)A2+1)*cAr2:
g=q+1; m=2"(q-1)

q

23

def cq(a,alpha):
s=0; gin=1.0; p=2
while p < 2ha:
if (alpha[0]ralpha[1]-1)%p==0:
gin=gin*p; s=s+1;
p=Primes() .next(p)
return 2As/gin.nth_root(a)
A=[]
for q in range(23,73):
m=q-1
if is_prime_power(q) and gr(m/4)<=27(q+1)*((q-1)7r2+1)*cq(8,[q,m]):
A.append(q)

A
[23, 25, 27, 29, 31, 32, 37, 41, 43]
for q in A:
if gr((q-1)/2)<=27(q+1)*((q-1)72+1)*4r(len(prime_divisors(qr(g-1)-1))):
print q
25
q=25; m=24

prime_factors(gqAm-1)
[2,3,7, 13,17, 31, 313, 601, 11489, 390001, 152587500001]

delta=1/25+2/152587500001+2/390001+2/11489+2/601+2/313; Delta=33/delta+2
qrm/2>2A(q+1+12) *Delta

True

These are the commands used in the proof of Proposition 5.17.

Wi

The commands follow more or less the flow of the proof of Proposition 5.17. We begin by
assuming that m0=(q-1)/2.
cq=4514.7; q=23; m=17
while gqr(m/4)<=4%cqnr2* ((q-1)72+1):
m=m+1
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32
cq=4514.7; q=23; m=17
while gr((q-1)/8)<=4*cqr2* ((q-1)"2+1):
q=q+1
q
54

def moO(beta):
n=beta[1]
while n%(divisors(beta[0])[1])==0:
n=n/divisors(beta[0])[1]
return n
A=[]
for q in range(23,54):
for m in range(17,32):
if is_prime_power(q) and mO([qg,m])==(qg-1)/2:
A.append([q,m])

[[37, 18], [41, 20], [43, 21], [47, 23], [49, 24], [53, 26]]

for alpha in A:
q=alpha[0]; m=alpha[1]; mo=mO(alpha)
if gA(m/2)<=4~(1+len(prime_divisors(gqrm-1)))*(q*(2*mo-1)/(q-2*mo)+2):
print alpha

won

The proof for the case m0=(q-1)/2 is now complete. We now move on to the case m0=(q-1)/3.

cq=4514.7; q=23; m=17
while gA(m/4)<=4%cqnr2* ((2*qr2-3"q+4)/(q+2)):
m=m+1

28

cq=4514.7; g=23; m=17
while qnr((q-1)/12)<=4*cqr2* ((2*qr2-3*q+4)/(q+2)):
q=q+1

67

A=[]
for q in range(23,67):
for m in range(17,28):
if is_prime_power(q) and mO([q,m])==(g-1)/3:
A.append([q,m])

[[61, 20], [64, 21]]

for alpha in A:

q=alpha[0]; m=alpha[1]; mo=mO(alpha)

if gr(m/2)<=4~(1+len(prime_divisors(qrm-1)))*(q*(2*mo-1)/(q-2*mo)+2):

print alpha

The proof for the case m0=(q-1)/3 is complete. Now we assume that mO<=(q-1)/4, which is the
most challenging case. First, we consider the case where q0 less than 17 prime divisors.
q=23; m=17
while gA(m/2)<=4718*(qr2-2*q+2)/(q+1):

q=q+1

28
q=23; m=17

while qA(m/2)<=4718*(qr2-2*q+2)/(q+1):
m=m+1
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for q in range(23,28):
if is_prime_power(q) and (q-1)%m0([q,17])==0:
print q
Now we can move on to the final case, where q0 has at least 17 prime divisors. Now that we have
some large prime divisors, i.e. we can apply multiplicative sieving as well... The commands
below find the 17th, 16th and 15th prime respectively.

Primes().unrank(17), Primes().unrank(16), Primes().unrank(15)
(61, 59, 53)

a=1-2/53-2/59-2/61; cq=4514.7; q=23; m=17
while 16*qr(m/4)<=cqr2* (qr2-(4*a+7)*q+2)/((2*a-1)*q+1):

m=m+1
m
22
q=23; m=17
while 16*qr(m/4)<=cqr2* (qr2-(4*a+7)*q+2)/((2*a-1)*qg+1):
q=q+1
q
78

Wi

cq computes d_r.
win
def cq(a,alpha):
s=0; gin=1.0; p=2
while p < 27a:
if (alpha[0]ralpha[1]-1)%p==0:
gin=gin*p; s=s+1;
p=Primes () .next (p)
return 27s/gin.nth_root(a)
for q in range(23,78):
for m in range(17,22):
if is_prime_power(q) and 16*q~r(m/4)<=cq(8,[q,m]) 2" (qr2-(4*a+7)*q+2)/((2*a-1)*"q+1):
print [q,m]

These are the Sage commands of Proposition 5.18.

W

The commands here follow closely the arguments of the proof.
q=23; m=20; c=4514.7
while (qr(1/4)/2)Mm<=4*cqr2* ((qr2*(q-2))/(qr2-q+1)+2):

m=m+1

236

q=23; m=20; c=4514.7

while (qAr(1/4)/2)Am<=4*cqr2* ((qr2*(m-2))/(2*qr2-m)+2):
q=q+1

q

988

def moO(beta):
n=beta[1]
while n%(divisors(beta[0])[1])==0:
n=n/divisors(beta[0])[1]
return n
A=[]
for q in range(20,988):
for m in range(20,236):
if is_prime_power(q) and is_odd(q) and mO([q,m])==2"gecd(q-1,m):
A.append([q,m])
len(A)
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310

def cq(a,alpha):
s=0; gin=1.0; p=2
while p < 27a:
if (alpha[O0]7ralpha[1]-1)%p==0:
gin=gin*p; s=s+1;
p=Primes () .next (p)
return 2As/gin.nth_root(a)
for alpha in A:
q=alpha[0]; m=alpha[1]
if (gAr(1/2)/2)~m<=4*cq(8,alpha)r2* ((qr2* (m0(alpha)-2))/(2*qr2-m0(alpha))+2):
print alpha

These are the commands we used in the proof of Proposition 5.19.

won

The commands follow closely the arguments of the proof of Proposition 5.19.
q=25; m=32; c=4514.7
while (q/8)A(m/4)<=4*cA2* ((5*q-9)/(4-5%(q-1)/qr4)+2):

m=m+1

77

q=25; m=32; c=4514.7
while (q/8)A(m/4)<=4*cA2*(qr4*(5"m-16)/(16*qr4-5"m)+2):
q:q+1

106

def mO(beta):
n=beta[1]
while n%(divisors(beta[0])[1])==0:
n=n/divisors(beta[0])[1]
return n
A=[]
for m in range(32,77):
for q in range(25,106):
if is_prime_power(q) and q%4==1 and mO([q,m])==4*gcd(m,q-1):
A.append([q,m])
len(A),A

(8, [[25, 32], [41, 32], [73, 32], [89, 32], [37, 48], [61, 48], [49, 64], [81, 64]])

def cq(a,alpha):
s=0; gin=1.0; p=2
while p < 27a:
if (alpha[0]+alpha[1]-1)%p==0:
gin=gin*p; s=s+1;
p=Primes () .next(p)
return 24s/gin.nth_root(a)
for alpha in A:
q=alpha[0]; m=alpha[1]
if (q/8)~(m/4)<=4*cq(8,alpha)r2*(qr4*(5*m-16)/(16*qr4-5"m)+2):
print alpha

These are the Sage commands of Proposition 5.20.

The commands follow closely the arguments of the proof of Proposition 5.20.
q=25; m=36; c=4517.4
while (q/47(13/9))A(m/4)<=4%cAr2* ((46*q-82)/(36-46%(q-1)/qr6)+2):

m=m+1

72
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q=25; m=36; c=4517.4

while (q/47(13/9))r(m/4)<=4*cA2* (g 6*(23*m-108)/(108*q"6-23*m)+2):
q=q+1

q

72

def mO(beta):
n=beta[1]
while n%(divisors(beta[0])[1])==0:
n=n/divisors(beta[0])[1]
return n
A=[]
for q in range(25,72):
if is_prime_power(q) and q%6==1 and m0([q,36])==6"gcd(m,q-1):
A.append([q,36])
len(A),A

(3, [[31, 36], [43, 36], [67, 36]])

def cq(a,alpha):
s=0; gin=1.0; p=2
while p < 27a:
if (alpha[0]ralpha[1]-1)%p==0:
gin=gin*p; s=s+1;
p=Primes() .next(p)
return 2As/gin.nth_root(a)
for alpha in A:
q=alpha[0]; m=alpha[1]
if (q/47(13/9))7r(m/4)<=4"cq(8,alpha)”2*(qr6* (23*m-108)/(108"qr6-23"m)+2):
print alpha

These are the commands used in the proof of Proposition 5.21.

The commands are complicated, but they follow the flow of the proof of Proposition 5.21
First, we consider g>=27.
q=27; m=17; e=1.0610/24
while (q/16)A(m/3)<=4*en2:
m=m+1

643

q=27; m=17; c=4514.7
while (qAr(1/4)/47(1/3))M<=4%cA2* ((qr2*(2*m-3))/(3*qr2-2"m)+2):
m=m+1

61

q=27; m=17; c=4514.7

while (qAr(1/4)/47(1/3))Mm<=4%cA2* ((qr2*(2*m-3))/(3*qr2-2"m)+2):
q=q+1

q

834

wn

cq computed d_{q_0} explicitly.
def cq(a,alpha):
s=0; gin=1.0; p=2
while p < 27a:
if (alpha[0]ralpha[1]-1)%p==0:
gin=gin*p; s=s+1;
p=Primes () .next (p)
return 2As/gin.nth_root(a)
A=[]
for m in range(17,61):
for q in range(27,834):
if is_prime_power(q) and (qr(1/4)/47(1/3))*m<=4*cq(8,[q,m])~2*
((@r2*(2*m-3))/ (3" qr2-2 m)+2) :
A.append([q,m])
len(A),A
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(26, [[31, 17], [27, 18], [29, 18], [31, 18], [32, 18], [37, 18], [41, 18], [43, 18], [47, 18], [49, 18], [61, 18], [27, 20], [29, 20], [31,
20], [32, 20], [37, 20], [41, 20], [43, 20], [47, 20], [29, 22], [27, 24], [29, 24], [31, 24], [32, 24], [37, 24], [43, 24]])

for alpha in A:
q=alpha[0]; m=alpha[1]
if (qAr(1/2)/47(1/3)) m<=4~r(1+len(prime_divisors(grm-1)))* ((qr2*(2*m-3))/(3*qAr2-2*m)+2):
print alpha
Since the last command yields no output, we have completed the case g>=27.
Now, we move on to the case q=23 or q=25. First, assume s=2 and m>=530.
q=23; m=17; c=3340.6
while gqA(m/4)<=4/7(1+2%624/3)*cA2:
m=m+1

759
q=25; m=17; c=2760.4
while gqA(m/4)<=47(1+2%*624/3)*cr2:
m=m+1
m
739

won

m0 computes m_0 (necessary for the computation of s) and sigma computes s,
in order to quickly exclude pairs from exception lists.
def moO(beta):
n=beta[1]
while n%(divisors(beta[0])[1])==0:
n=n/divisors(beta[0])[1]
return n
def sigma(beta):
s=1
while (beta[0]7s-1)%m0(beta)!=0:
s=s+1
return s
A=[1; q=23
for m in range(530,759):
if qr(m/4)<=47(1+2"624/3)*cq(8,[q,m])A2 and sigma([q,m])==2:
A.append([q,m])
q=25
for m in range(530,739):
if gqr(m/4)<=47(1+2*624/3)*cq(8,[q,m])*2 and sigma([q,m])==2:
A.append([q,m])
len(A),A

(3, [[23, 552], [25, 624], [25, 650]])

won

Here we deal with the three 'nasty' possible exception pairs. The ugliness of the following
code is due to the fact that W(F_0) is computed.
q=23; m=552; x=PolynomialRing(GF(q), 'x').gen()
print bool(gr(m/4)>4A(1+len(list((x*m-1).factor())))*cq(8,[q,m])"2)
q=25; x=PolynomialRing(GF(q, 'a'),'x').gen()
for m in [624,650]:
print bool(gqA(m/4)>47(1+len(list((xrm-1).factor())))*cq(8,[q,m])"2)

True True True

The case m>=530 is over. We continue with the case m<530.

q=23; m=17; c=3340.6

while (qAr(1/4)/47(1/3))Mm<=4%cA2* ((qr2*(2*m-3))/(3*qr2-2"m)+2):
m=m+1

67
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A=[]
for m in range(17,67):
for q in [23,25]:
if (qr(1/4)/47(1/3))rm<=4*cq(8,[q,m])A2* ((gr2*(2*m-3))/(3*qr2-2"m)+2):
A.append([q,m])
len(A),A

(16, [[23, 171, [25, 171, [23, 18], [25, 18], [23, 20], [25, 20], [23, 21], [25, 21], [23, 22], [25, 22], [23, 24], [25, 24], [23, 28], [23,
30], [25, 30], [23, 36]])

for alpha in A:
if sigma(alpha)==2:
print alpha

[23, 24]

Wi

(23,24) turned out to be another 'nasty' individual.

W

g=23; m=24

bool((gr(1/2)/47(1/3))Am>4A(1+len(prime_divisors(grm-1)))* ((qr2*(2*m-3))/(3*q"r2-2*m)+2))

True

Wi

Our final case is g=23,25 and s>=3; nothing special here...
g=23; m=17; c=3340.6
while gqr(m/4)<=47(1+5*m/9)*cA2:

m=m+1

1285

q=23; m=17; c=3340.6
while gr(m/4)<=4A(1+m/3)*cA2* ((qr3*(4*m-9))/(9*qr3-4"m)+2):
m=m+1

66

A=[]
for q in [23,25]:
for m in range(17,66):
if mo([q,m])>4 and sigma([q,m])>2 and g~ (m/4)<=4~(1+m/3)*cq(8,[q,m]) 2"
((qr3* (4*m-9))/(9*qr3-4"m)+2) :
A.append([q,m])
len(A),A

(11, [[23, 17], [23, 18], [23, 20], [23, 21], [23, 28], [23, 30], [23, 36], [25, 17], [25, 18], [25, 21], [25, 22]])

for alpha in A:
q=alpha[0]; m=alpha[1]
if gr(m/2)<=47r(1+len(prime_divisors(qrm-1)))* ((gr3*(4*m-9))/(9*gr3-4"m)+2):
print alpha

These are the commands that we used in the example in page 60.

wn

All the functions used here were borrowed from the proof of Theorem 4.25. is_primitive and
is_free do what their naming suggests, numtopoly creates the elements of F_{q"m}, g is the
modulus polynomial and maxpn determines the maximum number of elements to be found.
gq=23; m=18; maxpn=3
F=GF(q, 'a'); FX=PolynomialRing(F, 'X"'); X=FX.gen()
g=FX.irreducible_element(m); S=FX.quotient(g,'Y'); Y=S.gen()
def is_primitive(f):

f1=£(Y)

for p in prime_divisors(F.cardinality()/Ag.degree()-1):

if f1A((F.cardinality()rg.degree()-1)/p)==1:
return False
return True
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def is_free(f):
£1=F(Y)
ma=matrix(S, m, lambda i, j: f1r(qr((i+j)%m)))
return bool(ma.determinant()!=0)
def numtopoly(n):
m0=n; poly=0; i=0
while m0!=0:
poly=poly+list(F)[m0%q]*XA (i)
i=i+1; m0=floor(m0/q)
return poly
i=1; j=0
while j<maxpn and i<q7m:
f=numtopoly(i)
if is_free(f) and is_primitive(f) and is_free((2*f+1)/(f+1)) and
is_primitive((2*f+1)/(f+1)):
print f
j=j+1
i=i+1

X+1

2°X +5
33X +3

X8 + XM2 + 18X 11 + 2°X10 + X9 + 18"X"8 + 3"X 7 + 16"X"6 + 21"X"5 + 11"X"3 + 3"X"2 + 19"°X + 5
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