The LINE AND THE TRANSLATE PROPERTIES FOR r-PRIMITIVE ELEMENTS

Giorgos Kapetanakis
(Joint work with Stephen D. Cohen)
9th Greek Algebra and Number Theory Conference
Thessaloniki, 12-13 May 2023
University of Thessaly

Motivation

Primitivity

- Let \mathbf{F}_{q} be the finite field of q elements and $\mathbf{F}_{q^{n}}$ its extension of degree n.
- The generators of $\mathbf{F}_{q^{n}}^{*}$ are called primitive elements.
- Primitive elements are important for both theoretical and practical reasons.

r-primitivity

- High-order elements of $\mathbf{F}_{q^{n}}^{*}$, are also important, as in several applications they may replace primitive elements.
- The construction of such elements has been studied (Gao 1999, Martínez-Reis 2016, Popovych 2013), since that of primitive elements remains an open problem.
- An element of order $\frac{q^{n}-1}{r}$ is called r-primitive.
- The existence of 2-primitive elements that also possess other desirable properties has been considered (Cohen-K. 2019, K.-Reis 2018).

The translate property

- Some $\theta \in \mathbf{F}_{q^{n}}$ is a generator of $\mathbf{F}_{q^{n}} / \mathbf{F}_{q}$ if $\mathbf{F}_{q^{n}}=\mathbf{F}_{q}(\theta)$.
- If θ is a generator of $\mathbf{F}_{q^{n}} / \mathbf{F}_{q}$, the set

$$
\mathcal{T}_{\theta}:=\left\{\theta+x: x \in \mathbf{F}_{q}\right\}
$$

the set of translates of θ over \mathbf{F}_{q}. Every element of this set a translate of θ over \mathbf{F}_{q}.

- The extension $\mathbf{F}_{q^{n}} / \mathbf{F}_{q}$ possesses the translate property for r-primitive elements, if every set of translates contains an r-primitive element. In particular, for $r=1$ we simply call it the translate property.

The Carlitz-Davenport theorem

A classical result in the study of primitive elements is the following.

Theorem (Carlitz-Davenport)

There exist some $T_{1}(n)$ such that for every $q>T_{1}(n)$, the extension $\mathbf{F}_{q^{n}} / \mathbf{F}_{q}$ possesses the translate property.

- This first proved by Davenport (1937), for prime q, while Carlitz (1953) extended it as above.
- Interest in this problem was renewed by recent applications of the translate property in semifield primitivity (Rúa 2015, Rúa 2017).
- Let θ be a generator of the extension $\mathbf{F}_{q^{n}} / \mathbf{F}_{q}$ and $\alpha \in \mathbf{F}_{q^{n}}^{*}$. We call the set

$$
\mathcal{L}_{\alpha, \theta}:=\left\{\alpha(\theta+x): x \in \mathbf{F}_{q}\right\}
$$

the line of α and θ over \mathbf{F}_{q}.

- An extension $\mathbf{F}_{q^{n}} / \mathbf{F}_{q}$ possesses the line property for r-primitive elements if every line of this extension contains an r-primitive element. When $r=1$, we refer to this as the line property.
- It is clear that the line property implies the translate property, i.e., take $\alpha=1$.

Cohen's theorem

A natural generalization of the Carlitz-Davenport theorem is the following:

Theorem (Cohen)

There exist some $L_{1}(n)$ such that for $q>L_{1}(n)$, the extension $\mathbf{F}_{q^{n}} / \mathbf{F}_{q}$ possesses the line property.

- Proven by Cohen (2010).
- Clearly, $L_{1}(n) \geq T_{1}(n)$.

Explicit results

A handful of values of $T_{1}(n)$ are known as follows.

- $\left(\right.$ Cohen 1983): $T_{1}(2)=L_{1}(2)=1$.
- (Cohen 2009): $T_{1}(3)=37$.
- (Cohen 2010): $T_{1}(4), L_{1}(4)<25944$ and conjectured that $T_{1}(4), L_{1}(4)<64$ but this work contains errors.
- (Bailey-Cohen-Sutherland-Trudgian 2019): $L_{1}(3)=37$ and $73 \leq T_{1}(4) \leq L_{1}(4) \leq 102829$.

Our contribution

In this talk, we will outline how

1. we extended the Carlitz-Davenport and Cohen theorems to r-primitive elements and
2. how we obtained explicit results in the case $r=n=2$, that is, how we calculated $T_{2}(2)$ and $L_{2}(2)$.

These works can be found in the following references:
擂
S.D. Cohen and G. Kapetanakis.

Finite field extensions with the line or translate property for r-primitive elements. Journal of the Australian Mathematical Society, 111(3):313-319, 2021.
S.D. Cohen and G. Kapetanakis.

The translate and line properties for 2-primitive elements in quadratic extensions.
International Journal of Number Theory, 16(9):2029-2040, 2020.

PART I: ASYMPTOTIC RESULTS

Preliminaries - Freeness

- Let $m \mid q^{n}-1$, an element $\xi \in \mathbf{F}_{q^{n}}^{*}$ is m-free if $\xi=\zeta^{d}$ for some $d \mid m$ and $\zeta \in \mathbf{F}_{q^{n}}^{*}$ implies $d=1$.
- Primitive elements are exactly those that are q_{0}-free, where q_{0} is the square-free part of $q^{n}-1$.
- The following lemma shows the relation between m-freeness and multiplicative order.

> Lemma (Huczynska-Mullen-Panario-Thomson, 2013)
> If $m \mid q^{n}-1$ then $\xi \in \mathbf{F}_{q^{n}}^{*}$ is m-free if and only if $\operatorname{gcd}\left(m, \frac{q^{n}-1}{\operatorname{ord} \xi}\right)=1$.

Preliminaries - characteristic functions

Vinogradov's formula yields an expression for the characteristic function of m-free elements in terms of multiplicative characters:

$$
\Omega_{m}(x):=\theta(m) \sum_{d \mid m} \frac{\mu(d)}{\varphi(d)} \sum_{\text {ord } x=d} x(x)
$$

where μ is the Möbius function, φ for the Euler function, $\theta(m):=\varphi(m) / m$ and the inner sum suns through multiplicative characters of order d.

The characteristic function for the elements of $\mathbf{F}_{q^{n}}^{*}$ that are k-th powers is

$$
w_{k}(x):=\frac{1}{k} \sum_{d \mid k} \sum_{\text {ord } x=d} x(x) .
$$

Preliminaries - estimates

Proposition (Katz, 1989)

Let θ be a generator of $\mathbf{F}_{q^{n}} / \mathbf{F}_{q}$ and $x \neq x_{0}$ a character. Then

$$
\left|\sum_{x \in \mathbf{F}_{q}} x(\theta+x)\right| \leq(n-1) \sqrt{q} .
$$

Proposition

For every $\delta>0, d(n)=o\left(n^{\delta}\right)$, where $d(n)$ is the number of divisors of n and o signifies the little-o notation.

Characterization of r-primtive elements

Fix r, n and q, such that $r \mid q^{n}-1$. We will express $\Gamma(x)$, the characteristic function for r-primitive elements of $\mathbf{F}_{q^{n}}$ in a convenient way, using characters.

Let \mathcal{P} be the set of primes dividing $q^{n}-1$, i.e., $q^{n}-1=\prod_{p \in \mathcal{P}} p^{a_{p}}$. Assume $r=\prod_{p \in \mathcal{P}} p^{b_{p}}$. For every $p \in \mathcal{P}$, $0 \leq b_{p} \leq a_{p}$.

We partition \mathcal{P} as follows:

$$
\begin{aligned}
& \mathcal{P}_{\mathrm{s}}:=\left\{p \in \mathcal{P}: a_{p}=b_{p}>0\right\} \\
& \mathcal{P}_{\mathrm{t}}:=\left\{p \in \mathcal{P}: a_{p}>b_{p}>0\right\}=\left\{p_{1}, \ldots, p_{k}\right\} \\
& \mathcal{P}_{u}:=\left\{p \in \mathcal{P}: a_{p}>b_{p}=0\right\}
\end{aligned}
$$

Characterization of r-primitive elements

Set

$$
s:=\prod_{p \in \mathcal{P}_{s}} p^{b_{p}}, t:=\prod_{p \in \mathcal{P}_{t}} p^{b_{p}} \text { and } u:=\prod_{p \in \mathcal{P}_{u}} p .
$$

- The set of u-free elements, contains all the σ-primitive elements, where

$$
\sigma=\prod_{p \in \mathcal{P}_{s} \cup \mathcal{P}_{t}} p^{\sigma_{p}}
$$

for some $0 \leq \sigma_{p} \leq a_{p}$.

- For $i=1, \ldots, k$ set $e_{i}:=p_{i}^{b_{p_{i}}}$ and $f_{i}:=p_{i}^{b_{p_{i}}+1}$.
- From the set of u-free elements, that are also r-th powers, exclude those that are not f_{i}-th powers for every i.
- We are left with the r-primitive elements.

Characterization of r-primitive elements

Thus, the characteristic function for r-primitive elements of $x \in \mathbf{F}_{q^{n}}^{*}$ can be expressed as

$$
\begin{aligned}
\Gamma(x) & =\Omega_{u}(x) w_{r}(x) \prod_{i=1}^{k}\left(1-w_{f_{i}}(x)\right) \\
& =\Omega_{u}(x) w_{s}(x) \prod_{i=1}^{k} w_{e_{i}}(x)\left(1-w_{f_{i}}(x)\right) \\
& =\Omega_{u}(x) w_{s}(x) \prod_{i=1}^{k}\left(w_{e_{i}}(x)-w_{f_{i}}(x)\right)
\end{aligned}
$$

Characterization of r-primitive elements

Further,

$$
\begin{aligned}
w_{e_{i}}(x)-w_{f_{i}}(x) & =\frac{1}{e_{i}} \sum_{d \mid e_{i}} \sum_{\text {ord } x=d} x(x)-\frac{1}{f_{i}} \sum_{d \mid f_{i}} \sum_{\text {ord } x=d} x(x) \\
& =\frac{1}{e_{i}} \sum_{d \mid f_{i}} \sum_{\text {ord } x=d} \ell_{i, d} X(x)
\end{aligned}
$$

where, for $d \mid f_{i}$,

$$
\ell_{i, d}:= \begin{cases}1-1 / p_{i}, & \text { if } d \neq f_{i} \\ -1 / p_{i}, & \text { if } d=f_{i}\end{cases}
$$

Characterization of r-primitive elements

Putting everything together, we obtain

$$
\Gamma(x)=\frac{\theta(u)}{r} \sum_{\substack{d_{1}, u, d_{1}\left|s \\ \delta_{1}\right| f_{1}, \ldots, \delta_{k} \mid f_{k}}} \frac{\mu\left(d_{1}\right)}{\varphi\left(d_{1}\right)} \ell_{1, \delta_{1}} \cdots \ell_{k, \delta_{k}} \sum_{\substack{\text { ord } x_{j}=d_{j} \\ \text { ord } \psi_{i}=\delta_{i}}}\left(x_{1} x_{2} \psi_{1} \cdots \psi_{k}\right)(x),
$$

where $x \in \mathbf{F}_{q^{n}}^{*}$ and ($x_{1} X_{2} \psi_{1} \cdots \psi_{\lambda}$) stands for the product of the corresponding characters, a character itself.

Main result

Let $\mathcal{N}(\theta, \alpha)$ be the number of r-primitive elements of the form $\alpha(\theta+x)$, where $x \in \mathbf{F}_{q}$. It suffices to show that

$$
\mathcal{N}(\theta, \alpha)=\sum_{x \in \mathbf{F}_{q}} \Gamma(\alpha(\theta+x)) \neq 0
$$

We have that

$$
\left.\begin{array}{rl}
\frac{\mathcal{N}(\theta, \alpha)}{\theta(u)}= & \frac{1}{r}
\end{array} \sum_{\substack{d_{1}\left|u, d_{2}\right| s \\
\delta_{1}\left|f_{1}, \ldots, \delta_{k}\right| f_{k}}} \frac{\mu\left(d_{1}\right)}{\varphi\left(d_{1}\right)} \ell_{1, \delta_{1}} \cdots \ell_{k, \delta_{k}}\right)
$$

where

$$
\mathcal{X}_{\alpha, \theta}\left(X_{1}, X_{2}, \psi_{1}, \ldots, \psi_{k}\right):=\sum_{x \in \mathbf{F}_{q}}\left(X_{1} X_{2} \psi_{1} \cdots \psi_{k}\right)(\alpha(\theta+x))
$$

Main result

- The orders of all the factors of the character product $\left(X_{1} X_{2} \Psi_{1} \cdots \psi_{k}\right)$ are relatively prime. Hence the product itself is trivial if and only if all its factors are trivial.
- Hence, Katz's theorem implies that, unless all the characters $\chi_{1}, \chi_{2}, \psi_{1}, \ldots, \psi_{k}$ are trivial,

$$
\left|\mathcal{X}_{\alpha, \theta}\left(X_{1}, X_{2}, \Psi_{1}, \ldots, \Psi_{k}\right)\right| \leq \sqrt{q}
$$

- Clearly,

$$
\mathcal{X}_{\alpha, \theta}\left(X_{0}, X_{0}, x_{0}, \ldots, X_{0}\right)=q .
$$

Main result

We separate the term that corresponds to
$d_{1}=d_{2}=\delta_{1}=\ldots=\delta_{k}=1$ and obtain

$$
\left|\frac{\mathcal{N}(\theta, \alpha)}{\theta(u)}-\frac{q}{r} \cdot \ell_{1,1} \cdots \ell_{k, 1}\right| \leq \frac{1}{r} \sum_{\substack{d_{1}\left|u_{1}, d_{2}\right| s, \delta_{1}\left|f_{1}, \ldots, \delta_{k}\right| f_{k} \\
\text { not all equal to } 1}} \frac{\left|\ell_{1, \delta_{1}} \cdots \ell_{k, \delta_{k}}\right|}{\varphi\left(d_{1}\right)} \sum_{\begin{array}{c}
\text { ord } x_{j}=d_{j} \\
\text { ord } \psi_{i}=\delta_{i}
\end{array}} \sqrt{q} .
$$

For all $1 \leq i \leq k,\left|\ell_{i, \delta_{i}}\right| \leq \ell_{i, 1}$, hence $\mathcal{N}(\theta, \alpha) \neq 0$ if

$$
q>\sum_{\substack{d_{1}\left|u, d_{2}\right| s, \delta_{1}\left|f_{1}, \ldots, \delta_{k}\right| f_{k}}} \frac{1}{\varphi\left(d_{1}\right)} \sum_{\substack{\text { ord } x_{j}=d_{j} \\ \text { ord } \psi_{i}=\delta_{i}}} \sqrt{q} .
$$

For every $d \mid q^{n}-1$, there are exactly $\varphi(d)$ characters of order d. Hence the latter can be rewritten as

$$
q>s \cdot f_{1} \cdots f_{k} \cdot d(u) \cdot \sqrt{q}
$$

Main result

Also $u \mid q^{n}-1$, thus $d(u) \leq d\left(q^{n}-1\right)=o\left(q^{1 / 4}\right)$. Further,

$$
s \cdot f_{1} \cdots f_{k} \leq A_{r}:=\prod_{p \in \mathcal{P}_{s} \cup \mathcal{P}_{t}} p_{i}^{b_{i}+1}
$$

where the left side of the above inequality depends solely on r. It follows that, for q large enough, the latter condition holds. Hence $\mathcal{N}(\theta, \alpha) \neq 0$. We have proven the following:

Theorem (Cohen-K., 2021)

There exist some $L_{r}(n)$ such that for every prime power $q>L_{r}(n)$, with the property $r \mid q^{n}-1$, the extension $\mathbf{F}_{q^{n}} / \mathbf{F}_{q}$ possesses the line property for r-primitive elements. If we confine ourselves to the translate property for r-primitive elements, the same is true for some $T_{r}(n) \leq L_{r}(n)$.

PARt II: EXPLICIT RESULTS

First results

- Since $2 \mid q^{2}-1, q$ is odd and $4 \mid q^{2}-1$.
- Thus, following the previous notation, $s=1, t=2$ and u is the square-free part of the odd part of $q^{2}-1$.
- Set $W\left(q^{2}-1\right)=2^{t\left(q^{2}-1\right)}$, where $t(R)$ stands for the number of prime divisors of R. Clearly, $W\left(q^{2}-1\right)=2 d(u)$.
- Hence a sufficient condition for $\mathbf{F}_{q^{2}} / \mathbf{F}_{q}$ to possess the line property is

$$
\sqrt{q} \geq 2 W\left(q^{2}-1\right)
$$

- We have that $W(R) \leq d_{R} R^{1 / 8}$, where $d_{R}<4514.7$.
- We obtain the desired result when

$$
q \geq(2 \cdot 4514.7)^{4} \simeq 6.65 \cdot 10^{15}
$$

- This implies that the case $t\left(q^{2}-1\right) \geq 14$ is settled.

Cohen's evaluation

In the special case $n=2$, Katz's theorem can be improved as follows

Lemma (Cohen, 2010)

Let θ be a generator of $F_{q^{2}} / F_{q}$ and $x \neq x_{0}$ a character. Set

$$
B:=\sum_{x \in \mathbf{F}_{q}} x(\theta+x) .
$$

1. If ord $x \nmid q+1$, then $|B|=\sqrt{q}$.
2. If ord $X \mid q+1$, then $B=-1$.

Further theoretical reductions

With the above in mind we:

1. Distinguish the cases $q \equiv 1(\bmod 4)$ and $q \equiv 3(\bmod 4)$.
2. Employ the Cohen-Huczynska (2003) sieve.
3. Use an algorithm that settles the case $\alpha \leq t\left(q^{2}-1\right) \leq \beta$ and successfully use it when $(\alpha, \beta)=(11,13)$ and $(10,10)$.
4. We are left with the case $t\left(q^{2}-1\right) \leq 9$, i.e., $q \leq\left(2 \cdot 2^{9}\right)^{2}=1048576$.
5. The interval $3 \leq q \leq 1048576$ contains exactly 82247 odd prime powers.
6. We first replace $d_{q^{2}-1}$ by its exact value and then $W\left(q^{2}-1\right)$ by its exact value we reduce the list to a total of 2425 possible exceptions.

Final theoretical reductions

The sieve reduces that list to a total of 101 possible exceptions as follows:

q	$\#$
$3,5,7,9,11,13,17,19,23,25,27,29,31,37,41,43,47,49,53$,	101
$59,61,67,71,73,79,81,83,89,97,101,103,109,113,121,125$,	
$127,131,137,139,149,151,157,169,173,181,191,197,199$,	
$211,229,239,241,269,281,307,311,331,337,349,361,373$,	
$379,389,409,419,421,461,463,509,521,529,569,571,601$,	
$617,631,659,661,701,761,769,841,859,881,911,1009,1021$,	
$1231,1289,1301,1331,1429,1609,1741,1849,1861,2029$,	
$2281,2311,2729,3541$	

Direct verification

1. We first verified the translate property for the 101 exceptional prime powers. It turns out that the only genuine exceptions are $q=5,7,11,13,31$ and 41 . We spent about 2.5 hours of computer time for this.
2. A direct verification of the line property revealed the additional genuine exceptions $q=3$ and 9 .
3. The direct verification of the line property turned out to be exceptionally expensive in terms of computer time. For example, $q=3541$ required 45 days of computer time, $q=2729$ required 20 days and $q=2029$ required 14 days.

Main results

Summing up, we proved the following:

Theorem (Cohen-K., 2020)

For every odd prime power $q \neq 5,7,11,13,31$ or 41 the extension $\mathbf{F}_{q^{2}} / \mathbf{F}_{q}$ possesses the translate property for 2 -primitive elements. In particular, $T_{2}(2)=41$.

Theorem (Cohen-K., 2020)

For every odd prime power $q \neq 3,5,7,9,11,13,31$ or 41 the extension $\mathbf{F}_{q^{2}} / \mathbf{F}_{q}$ possesses the line property for 2-primitive elements. In particular, $L_{2}(2)=41$.

Thank You!

